
Learning over Categorical Data using Counting Features
With an Application on Click-through Rate Estimation

Xuyang Wu

University College London

London, United Kingdom

xuyang.wu@outlook.com

Xinyang Gao

JPMorgan

London, United Kingdom

xinyang.gao@jpmorgan.com

Weinan Zhang

Shanghai Jiao Tong University

Shanghai, China

wnzhang@apex.sjtu.edu.cn

Rui Luo

University College London

London, United Kingdom

r.luo@cs.ucl.ac.uk

Jun Wang

University College London

London, United Kingdom

jun.wang@cs.ucl.ac.uk

ABSTRACT
Input data for many machine learning applications are often cate-
gorical and contain multiple fields. A common feature representa-
tion for such categorical data is one-hot encoding, which expresses
data instances as high-dimensional sparse binary vectors. Given
this encoding machine learning models, such as logistic regression
or boosted trees, are trained. However, the following problems
occur when dealing with large-scale data sets: (i) The binary fea-
ture space is sparse yet extremely large, which can require a large
amount of computational resources. (ii) Models based on such a
feature representation will typically need to be re-trained in order
to keep up-to-date with any changes in the data distribution. (iii)
The one-hot feature representation provides little generalisation
ability. In this paper, we propose counting features, a novel statistics-
based feature engineering paradigm, to address the above problems.
Mathematically, we show a deterministic relationship between the
optimal regression parameters of counting features and one-hot bi-
nary features. Then, in the context of click-through rate estimation
in online advertising, we demonstrate that counting features indeed
bring better generalisation ability. Our experiments on real-world
large-scale datasets demonstrate that, despite their compressed na-
ture, the proposed counting feature engineering outperforms the
one-hot binary encoded features in various cases such as cold start
training and cross-campaigns training.

1 INTRODUCTION
In many learning applications, e.g., web search, recommender sys-
tems and online advertising, the features of input data are cate-
gorical [13]. That is, multiple fields form the feature set and for
each field there is a set of possible categories. For example, for the
field City, there could be more than 104

different categories, e.g.,
London or Paris, in a dataset. An example of such a categorical
data set is provided in Table 1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DLP-KDD’19, August 5, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.

A standard feature engineering paradigm for representing such

categorical data in a mathematical model is one-hot encoding, in
which each category in each field is treated as a distinct dimension

of the feature space. Each field is represented as a sparse binary vec-

tor whose dimension is equal to the number of unique categories in

the field. Each element of this vector represents a specific category

of the field, and is set to 1 only for those data instances of which this

field is specified as the corresponding category. For the City field
example, if the category London is assigned with index of 3, then

for any data instance with field City:London, the one-hot encoded
binary feature for its City field is (0, 0, 1, 0, . . . , 0)(1×104). Given

such a sparse binary vector for each field, the final feature vector is

obtained through the concatenation of each such “field-wise” binary

feature vector.

However, such one-hot feature encoding method causes the

following inevitable problems when encountering the “3Vs chal-
lenges” of the big data [6]. Volume: The dimensionality of the

binary feature vector is extremely large, which imports the curse

of dimensionality and requires much computational resource. Ve-
locity: Most machine learning models based on such a feature

representation need to be re-trained with the latest data in order to

keep up-to-date with any changes in the data distribution. Variety:
The one-hot feature representation provides little generalisation

ability.

In this paper we address these problems through the construction

of a simple non-sparse feature transformation of categorical data.

We refer to the corresponding feature representation as counting
feature representation. Instead of indexing each unique category of

a field as a new binary feature, counting features are continuous

statistical values on the field level. Specifically, we use some statis-

tics, such as frequency or average of the target value, to represent

the category of the field. These numerical values, while preserving

critical statistics of the data, make the categories meaningful and

allow for comparison between them. It also dramatically reduces

the dimensionality of the feature representation.

We establish in theory the deterministic relationship between

coefficients of the proposed counting features and that of the sparse

binary one-hot features for (generalised) linear regression problems.

This relationship shows that counting features can be calculated by

a linear/non-linear transformation on the binary features, which

compresses information and reduces dimensionality. Furthermore,

we prove that the optimal coefficients of counting features are

DLP-KDD’19, August 5, 2019, Anchorage, AK, USA Xuyang Wu, Xinyang Gao, Weinan Zhang, Rui Luo, and Jun Wang

also associated to that of binary features through a non-linear

deterministic mapping.

We investigate the performances of linear regressions trained

on binary and counting features in a clean environment based on

synthetic data, where counting features demonstrate significant

effectiveness in handling cold start and data drift problems. Later

in the context of practical online advertising for click-through rate

(CTR) estimation [22], the logistic regression and the boosted trees

models [9] based on counting features are investigated. Our exper-

iments on two real-world large-scale online advertising datasets

confirm that despite its compressed representation, the performance

of counting features is highly comparable to that of binary features.

In the context of cross-campaign cold-start CTR prediction, we

demonstrate that the counting features indeed bring better gener-

alisation ability to the learning models due to the lower dimension

and higher stability of the representation, which partly solves the

cold-start training task with data drift problems across campaign

and over time in online advertising.

2 RELATEDWORK
CTR Estimation is a crucial machine learning task in online

performance-driven advertising. With the binary click response as

target and the context information as features, CTR estimation is

formalised as a standard regression problem. The authors in [20]

make use of logistic regression for CTR estimation. In [22] a boosted

tree method is considered, and superior performance was obtained

in comparison to the linear models. The practical engineering as-

pects of CTR estimation on complex huge real-world datasets, as

well as the performances of traditional machine learning models,

are discussed in [12]. Recently, the authors of [9] combine deci-

sion trees and logistic regression together, using decision trees to

construct a non-linear transformation of the original feature space,

and then applying logistic regression to this transformed feature

space. The empirical results in [9] indicate that such an approach

can provide a significant improvement in model performance. In

our study, we will refer the GBRT model in [9], but rather than

binary features they use, we will apply GBRT model on counting

features.

Feature Engineering is common in machine learning [21]. A

good feature engineering solution would produce a more flexible

and meaningful feature space. In [9], the high-dimensional binary

feature space is transformed into a low-dimensional space using

decision trees. In our paper, different from the majority research

work in CTR prediction model design and optimisation, we focus on

a more fundamental problem, i.e., how to prepare a better feature

space from the categorical data for effective model training. There

are some implementations of building historical features mentioned

CTR estimation tasks [9, 11]. Compare to them, our work is a com-

prehensive investigation on counting features from both theoretic

and practical aspects with various scenarios.

Transfer Learning is different from a classic machine learning

setting, where the difference between training and testing datasets

is ignored. In real world, the training and prediction stages normally

suffer from the problem of data drift [18]. In [16], the authors make

a detailed discussion on transfer learning focusing on categorising

transfer learning for classification problems. When the source and

target tasks are the same and the source and target domains are

different, domain adaptation is considered [5, 15]. In [2] the domain

adaptation problem in sentiment classification is discussed. No la-

belled data for the new domain is needed, cross-domain prediction

is solved based on the assumption that the source and target do-

mains only share a part of the features, so the difference between

the two domains can be solved byminimising the distances between

the two domains. The work in [7] gives an example of the method

parameter transfer, which aims to discover the shared parameters

or priors between the source and target domains. This approach is

based on the assumption that the marginal distribution of feature

spaces for target-domain and source-domain are similar, and also

conditional probabilities ought to be similar.

The approach of this paper is based on the assumption that

tasks of old and new campaigns are the similar, which are binary

regressors; however, the domains of the two will be distinct due to

different data distribution and feature sets.

3 COUNTING FEATURES
3.1 Introduction to Counting Features
In order to handle the “3Vs challenges” of big data [6], a feature

scheme should meet the requirements of volume, velocity and va-
riety. Volume: The feature space should be of low dimension and

the number of features should have no strong relationship with the

amount of data instances. As such, there will be few new features

introduced into the model when observing more and more data

instances. Velocity: The feature representation should be robust

to changes to the data distribution, and hence model performance

should also be robust to any such changes. Variety: The feature
space should provide generalisation capabilities, allowing models

to make informed predictions in previously unseen parts of the fea-

ture space, or parts of the feature space that contain small amount

of data. An important example is real-time systems, for which the

model should generalise to new forms of data instance, such as

previously unseen categories.

In order to meet the above three requirements, we propose the

concept of counting features, which departs from the traditional

one-hot sparsely encoded binary features. Counting features are

essentially field-wise statistical features, i.e., certain statistics of the

data for some or all of the fields. For example, one such feature may

be the frequency of the data which has the same category for the

Gender field, the average target value of the data instances which
have the same category for the City field.

Given a data instance, the one-hot binary encoding of that in-

stance can be written in the form,

x⊤b = [x⊤b ,1 x
⊤
b ,2 · · · x⊤b ,M] , (1)

for which x⊤b ,m is the one-hot encoding of the mth
field, m =

1,,M . Given N data points, x1b , ...,x
N
b , we write the one-hot

encoding of these instances in matrix notation, with

Xb =



x1⊤b
x2⊤b
...

xN⊤
b


=



x1⊤b ,1 x1⊤b ,2 · · · x1⊤b ,M
x2⊤b ,1 x2⊤b ,2 · · · x2⊤b ,M
...

...

xN⊤
b ,1 xN⊤

b ,2 · · · xN⊤
b ,M


. (2)

Learning over Categorical Data using Counting Features DLP-KDD’19, August 5, 2019, Anchorage, AK, USA

Table 1: An example of categorical data.

Target Gender Weekday City Browser

1 Male Tuesday London Chrome
1 Female Tuesday Paris Chrome
0 Female Wednesday London Firefox
*1 Male Wednesday Paris Firefox
0 Male Tuesday Berlin Safari

Similarly, we denote the target value of the N data points by,

y1, ...,yN , and use Y to denote the N -dimensional vector of these

target values. Given F counting functions, f1(·), ..., fF (·), for each
fk : {0, 1}p → Rq , wherep represent the dimensions of the one-hot

binary encoding of a field and q the dimension of the corresponding

counting encoding of that field, the counting feature encoding of a

one-hot binary feature vector, xb , is given by,

x⊤c = [x⊤c ,1 x
⊤
c ,2 · · · x⊤c ,M], (3)

with

x⊤c ,m = [f1(xb ,m) f2(xb ,m) · · · fF (xb ,m)], (4)

form = 1, ...,M . GivenM fields and F field-wise counting functions,

there are only M × F counting features in total, which has no

relationship with the amount of training data or the number of

unique categories in each field. Such a feature scheme therefore

naturally meets the volume requirement.

Several examples of counting function are the frequency counting
function,

ffreq(xb ,m) =
1

N
x⊤b ,m

N∑
n=1

xnb ,m, (5)

which measures the frequency with which a category is observed

in a field, the average target value function,

favg(xb ,m) =
x⊤b ,m

∑N
n=1 y

nxnb ,m

x⊤b ,m
∑N
n=1 x

n
b ,m

, (6)

which measures the average value of the target function across data

instances which contain the given category in the given field, and,

similarly, the averaged squared target value function,

favgsq(xb ,m) =
x⊤b ,m

∑N
n=1(y

n)2xnb ,m

x⊤b ,m
∑N
n=1 x

n
b ,m

. (7)

Other counting functions includes quantiles andmode etc. Note that

the summation over the data set in Eqs. (5, 6 & 7) can be calculated

once and for all and stored in memory. The evaluation of these

counting functions can then be done in O(1) time. Furthermore,

in situations where the data is arriving through a real-time data

stream, such as online programmatic advertising, it is possible to

update these quantities inO(1) time. Counting features are therefore

amenable to real-time situations.

An example of a counting feature vector associated with the

data given in Table 1, which contains four fields of categorical data,

Gender, Weekday, City and Browser.
Applying the counting functions, ffreq(vm) and favg(vm), to

each field vm of the data, then the 4
th

data instance in Table 1

(denoted *) is expressed as a counting feature vector of the form,

[[

ffreq(Male)︷︸︸︷
0.6 ,

favg(Male)︷︸︸︷
0.67]︸ ︷︷ ︸

Gender

, [0.4, 0.5]︸ ︷︷ ︸
Weekday

, [0.4, 1.0]︸ ︷︷ ︸
City

], [0.4, 0.5]︸ ︷︷ ︸
Browser

].

Note that the dimensionality of one-hot sparse binary features will

change when, say, there is a new city recorded in the dataset, but

the dimensionality of the counting features will remain constant. As

a special case, when the target value y is binary, i.e., y ∈ {0, 1}, the

frequency counting function ffreq(vm) and averaged target value

function favg(vm) will be sufficient statistics [19] of the model for

target values, thus other statistics such as the standard deviation,

quantiles are determined given the frequency and averaged target

value in binary cases.

Moreover, with much lower dimension, the proposed counting

features have the advantages of the unified and constant feature

space compared to the one-hot encoded binary features, thus prob-

lem of feature space discrepancy between two data instances with

one-hot features does not exist in counting features. In addition,

according to [10], each pair of lower-dimensional random vectors

tend to have a higher cosine/pearson correlation, hence reduce

the feature variety. Another nice property of the resulting lower-

dimensional feature spaces is the fact that the resulting models are

much easier to handle when it comes to ‘debugging’ unexpected

outputs, which matters in practice.

A severe problem with models based on a one-hot sparse feature

encoding is that they frequently need to be retrained, i.e., updating

the model coefficients, to keep up-to-date with changes in the

data distribution. For instance, in the case of CTR estimation a

unique identifier of an advertising campaign is often converted

into a one-hot encoding and then used as a feature in the model.

Campaigns usually run for only a relatively short period of time,

and new campaigns typically start on a daily basis. Models built on

a one-hot feature encoding will be unaware of the existence any

new campaigns until data instances of these new campaigns are

seen in the training data, and this requires models to be retrained

multiple times a day. By contrast, given that the counting feature

functions are incrementally updated in real-time, then the counting

features will remain up-to-date with changes in the data distribution

(without updating the model coefficients). Furthermore, as counting

features generalise across the categories of a field, then a model

based on counting features can make meaningful predicitions on

data instances which contain categories that were not present in

the training data. Given that the counting features of the new

categories are not anomalous in comparison to the distribution

of counting features over which the model was trained, then one

would expect the model performance to be good on these new

instances. In this manner counting features address the velocity
and variety requirements of big data feature engineering.

In summary, counting features are a novel field-wise statistical

feature engineering paradigm which satisfy the aforementioned

“3Vs” of big data feature engineering. We will discuss on its math-

ematical properties and empirical performance in the rest of the

paper.

3.2 Relation to Binary Features
In this section we present a mathematical relationship between

the optimal linear regression coefficients (weights) of a sparse bi-

nary one-hot feature encoding and a counting feature encoding.

We consider linear regression so that an analytic solution for the

coefficients can be obtained and the relationship can be clearly

DLP-KDD’19, August 5, 2019, Anchorage, AK, USA Xuyang Wu, Xinyang Gao, Weinan Zhang, Rui Luo, and Jun Wang

observed. The assumption in this section is that there is a single

counting feature for each field in the data. The extension of the

result to multiple counting fields is trivial.

Theorem 1. Suppose we are given a set of one-hot binary features,
Xb ∈ RN×D . Additionally, suppose we are given a set of counting
features, Xc ∈ RN×M , constructed from the one-hot binary features,
withM the number of distinct fields in the data set. Suppose that the
one-hot binary features and the counting features are related through
the mapping,

Xc = XbT (Xb), (8)

withT (Xb) ∈ RD×M somematrix that depends onXb . (For notational
ease we shall use T to denote T (Xb).)

Suppose thatwb ∈ RD andwc ∈ RM are the optimal weights of
the linear regressions problems, respectively,

y1 = x⊤b w1 + ϵ1, (9)

y2 = x⊤c w2 + ϵ2. (10)

Provided that X⊤
b Xb and T⊤X⊤

b XbT are both invertible, then the
optimal linear regression parameters of the one-hot binary features
and the counting features satisfy the relation,

wc =
(
T⊤X⊤

b XbT
)−1

T⊤X⊤
b Xbwb . (11)

Proof. The optimal weights of the regression problem (9) satisfy

the standard relation,

wb =
(
X⊤
b Xb

)−1
X⊤
b Y . (12)

Likewise, the optimal weights of the regression problem (10) are

given by

wc =
(
X⊤
c Xc

)−1
X⊤
c Y . (13)

From the relation (8) this is equivalent to,

wc =
(
T⊤X⊤

b XbT
)−1

T⊤X⊤
b Y . (14)

From (12), we have that X⊤
b Y =

(
X⊤
b Xb

)
wb , so that (14) can be

written in the equivalent form,

wc =
(
T⊤X⊤

b XbT
)−1

T⊤X⊤
b Xbwb ,

which completes the result. □

We note that the form of one-hot binary features infers that it is

always possible to write the relationship between counting features

and binary ones in the form (8). In particular, defining T ∈ RN×M

such that Tn,m = f (xnb ,m), for m = 1, ...,M and n = 1, ...,N , it

follows that (8) holds. Hence the result in Theorem 1 will always

hold.

3.3 Learning Models with Counting Features
Consider the example of click-through rate prediction [8, 12], it is

necessary to predict whether a user clicks an ad or not. In this case

the target variable, y ∈ {0, 1}, denotes whether the user clicked on

the ad: y = 1 if clicked, and the features, x , contain information

such as the users’ previous browsing history, the content of the

website etc. Based on counting features representation of the data it

is possible to learn a logistic regression model (LR) [12] that directly

models the probability that the user will click on the ad,

PLR(y = 1|xc) =
1

1 + exp(−w⊤xc)
, (15)

and PLR(y = 0|xc) = 1 − PLR(y = 1|xc).
Equally, with counting features it is possible to build other mod-

els, such as tree-based models. Compared with binary features, the

continuous space of counting features naturally accommodates the

space-splitting-based techniques of tree-based models.

We use gradient boosting regression trees (GBRT) [4] to obtain

a non-linear CTR prediction model. Starting with an initial regres-

sion tree, the GBRT algorithm incrementally builds a collection

of regression trees. After G iterations there will be G trees in the

collection, and the GBRT regressor will take the form,

PGBRT(y = 1|xc) =
G∑
k=1

дk (xc), (16)

where дk (xc) denotes the prediction of the kth tree on xc. At each
stage of the algorithm a new tree is learnt by minimising the square

of the residuals between the target variables and the predictions

given by the current GBRT regressor. More details of the GBRT

method can be found in [4, 9].

Aswill be discussed in Section 6.2, the performance of GBRTwith

counting features is highly comparable to that of LR and GBRT

with binary features measured by area under the curve (AUC),

which further verifies the effectiveness and rationality of counting

features.

4 SYNTHETIC DATA EMPIRICAL STUDY
In this section, we perform an empirical study on comparing the

machine learning models based on binary and counting features

using synthetic data. With the synthetic data, we could create a

clean test environment to get rid of various noise in different real-

world scenarios to better study the properties of counting features.

Specifically, we study the properties of the learning models on

counting features in cold start and data drift tasks, respectively.

4.1 Cold Start Study
In this experiment, we study the cold start problem [14], where the

data instance number is not sufficiently higher than the number

of binary features (i.e. the total categories). The number of fields

is set to be 3, as for the number of categories in each field, it is

to be tuned and denoted as z. There is a fixed size of training and

test dataset in this experiment, each contains 10,000 instances. For

each data instance, the categories of the 3 fields are uniformly

sampled from z categories1. These categories are then converted

into one-hot binary featuresX train

b andX test

b and frequency, average

target value counting featuresX train

c andX test

c . Then we sample the

binary feature weight vectors on training and test datasets with the

same Gaussian distribution, denoted asw train

b andw test

b respectively.

With the binary features and sampled weights, the target value for

each instance can be generated via Y train = X train

b w train

b + ϵ and

Y test = X test

b w test

b +ϵ , where ϵ is the Gaussian white noise sampled

from N(0, I). Then with (X train

b ,Y train) and (X train

c ,Y train), we can

learn the binary feature weight ŵb and counting feature weight

ŵc using standard linear regression model, respectively. Then we

test the root mean squared error (RMSE) performance of linear

1
Other distributions, e.g., linear, exponential and power law, are also studied and

provide the similar results.

Learning over Categorical Data using Counting Features DLP-KDD’19, August 5, 2019, Anchorage, AK, USA

0 500 1000 1500 2000 2500 3000
No. of Categories per Field

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

R
M

S
E

binary
counting
random

(a) Performance

0 500 1000 1500 2000 2500 3000
No. of Categories per Field

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

R
M

S
E
 D

ro
p
 P

e
rc

e
n
ta

g
e

RMSE Drop

(b) RMSE Drop

Figure 1: Comparison with cold start setting.

0 500 1000 1500 2000 2500 3000
No. of Categories per Field

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

R
M

S
E

binary
counting

(a) Performance

0 500 1000 1500 2000 2500 3000
No. of Categories per Field

-60%

-50%

-40%

-30%

-20%

-10%

0%

R
M

S
E
 D

ro
p
 P

e
rc

e
n
ta

g
e RMSE Drop

(b) RMSE Drop

Figure 2: Comparison with data drift setting.

regression models on test data with binary features (X test

b ,Y
test)

and counting features (X test

c ,Y
test).

Figure 1 shows the models’ prediction performance on test data

against z. It can be observed that the estimation performance im-

provement of the counting feature trained model is much more

significant than that of the binary feature trained one as the number

of categories per field increases. The reason is that as the category

number in each field increases, the binary feature number increases

as well, which means more training instances are needed to learn a

well-trained model. However, in the setting, the number of training

instances is fixed to 10,000. Therefore the performance of binary

feature trained model works unsatisfactory and just slightly better

than the random guessing baseline as the number of category in

each field increases. By contrast, the number of counting features

does not increase; its values (i.e., frequency and averaged target

value) are denser and more diverse when the categories number

increases, which helps counting feature trained model to achieve

better performance.

4.2 Data Drift Study
Different from the cold start setting, in this experiment the training

instances are sufficient. The number of training instances is set to

as 10 times as that of the binary features. In addition, the weight

vectors of training and test data are sampled from two Gaussian

distributions with different means (0.1 and 0.5) and variances (1

and 2), which means the average target value of each category is

different. Moreover, the frequency distributions of the categories in

each field are also different on two datasets. For the training data,

we generate the categories by a uniform distribution, while for the

test data we generate the categories by a linear distribution, i.e., the

Table 2: Feature property comparison.

Feature Types Space Sparsity Dimension Model Drift

Binary Different Sparse High Heavy

Counting Same Dense Low Light

probability of generating each category is proportional to its index

number. Again, we change the number of categories in each field

and check the performances of two models.

As can be observed, in this data drift test, counting feature trained

model consistently outperforms the binary feature trained one,

which verifies that the low-dimensional counting features help

build the model with higher generalisation ability. As the number

of categories in each field increases, although both models perform

better as there are richer feature representations and sufficient

training instances, the improvement of counting feature trained

model gets more significant than that of the other, which verifies the

robust effectiveness of counting features on transferring knowledge

from drifted data distribution.

From the discussions of Sections 3 and 4 the comparison between

binary and counting features can be summarised in table 2.

5 PRACTICE ON AD CTR ESTIMATION
In this section, we discuss a practical application where the pro-

posed counting feature representation would demonstrate its ef-

fectiveness of compact representation, efficient updating and high

generalisation across different domains. Then detailed experiments

are provided in Section 6.

5.1 Zero-Shot Cross-Campaign CTR Estimation
As discussed in [3], many traditional machine learning algorithms

and models can be only used under the assumption that the training

and test datasets are generated from the same distribution and with

the same feature space, which is, however, rare in practice. When

the distribution changes, the model needs to be re-trained with new

data to keep up-to-date. In the context of online advertising with

different ad campaigns, it is expensive and time-consuming to per-

form random ad display to collect the user click data and then train

an initial ad click-through rate (CTR) model. In this case, transfer

learning is needed which can borrow the knowledge learned from

previous ad campaigns and apply to new campaigns to increase the

efficiency for CTR prediction and decrease the cost of training new

models. According to [17], however, the user behaviour across dif-

ferent campaigns are quite different. For example, a football sneaker

campaign is probably preferred by young male users while lipstick

campaign is only interesting to female users; a London tourism

ticket campaign is only popular among UK users while such users

will not get interested in a campaign of Shanghai hotel. It is non-

trivial to perform knowledge transfer from a well-studied campaign

to a new one.

At first, using the definitions in [16], for the source domain, we

specify the data of a well-studied campaign asX s = {xs
1
,xs

2
, ...,xsn },

with each instance sampled from a p.d.f. ps (x), and the correspond-

ing user click feedback as Y s = {ys
1
,ys

2
, ...,ysn }. Assuming the data

has already been processed by a certain feature engineering and

X s
is encoded with feature representation. The learning model on

the source data is denoted as pθ (y
s |xs), which is parameterised

DLP-KDD’19, August 5, 2019, Anchorage, AK, USA Xuyang Wu, Xinyang Gao, Weinan Zhang, Rui Luo, and Jun Wang

●
●

●
●

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
Binary Feature Trained Models

C
ou

nt
in

g
F

ea
tu

re
 T

ra
in

ed
 M

od
el

s campaign

●●

●●

12482

1371

1414

14501

15140

16280

20224

20762

22134

8908

A−Distance Comparison

Figure 3:A-Distances of the binary/counting feature trained
models among campaigns.

by θ . Similarly, for the target domain, the data of a new campaign

is denoted as X t = {xt
1
,xt

2
, ...,xtn }, with each instance sampled

from a p.d.f. pt (x), and its feedback as Y t = {yt
1
,yt

2
, ...,ytn }. The

prediction model is denoted as pϑ (y
t |xt), with another parameter

ϑ .
From the above discussion, both the distributions of the data X s

andX t
and the true prediction models pθ (y

s |xs) and pϑ (y
t |xt) are

quite different from its counterparts. If we could find a good feature

representation of the data f (x) such that the underlying prediction

model is close to each other pθ (y
s | f (xs)) ≈ pθ (y

t | f (xt)) with the

same parameter θ , the zero-shot CTR estimation transfer learning

would be successful across campaigns.

5.2 Cross-Campaign Model Distance
In this section, we try to find a quantitative relationship between

the models trained on any two different campaigns, which can be

used to measure the difficulty of knowledge transfer.

Specifically, we borrow the concept of transfer distance, namely

A-distance proposed in [1], to measure the difference between the

condition probability pθ (y
s |xs) and pθ (y

t |xt). With either binary

features or counting features, we train a model on campaign s and
perform CTR estimation on another campaign t . The A-distance is

calculated by

A-Distance = 4 × (1 − AUC), (17)

which is in the range of [0, 2]. The lower the A-distance is, the

more similar the models on the two domain are. We performed 10

times of trials for each campaign pair and average the A-distance

for each source campaign to get the result as depicted in Figure 3.

It can be observed that in 8 out of 10 cases the A-distance of

counting feature trained models between the source domain to the

rest of the target domains are lower than those trained by binary

features. Thus we regard it is more feasible to accept pθ (y
s |xs) ≈

pθ (y
t |xt) as a reasonable assumption in our cross-campaign setting

with counting features.

Therefore, we can directly apply the model learned from the old

campaign to the new campaign and we still expect to get decent

CTR prediction performance. Moreover, as discussed in Section 5.1,

since the value of counting features can be updated in real-timewith

O(1) time, by updating the counting values after observing each

data instances,pt (xt) could efficiently approach its true distribution

with increasing number of new incoming data instances, thus the

CTR estimation performance could get improved.

6 EXPERIMENTAL RESULTS
In this section, the empirical results will be presented in two stages.

First, in the standard single campaign CTR estimation task, we

will demonstrate that the CTR performance of counting features

is comparable to or even better than that of one-hot binary fea-

tures. Second, we will show that the counting features perform

significantly better than the binary features in cross-campaign CTR

estimation task.

6.1 Experiment Setup
Datasets. Our experiments will be based on two large-scale real-

world datasets. The first is a public dataset from iPinYou [23], which

contains 19.5M ad impressions and 14.8K clicks from 9 campaigns.

The second dataset is a proprietary dataset provided by Adform,

a global digital media advertising technology company based in

Copenhagen, Denmark. It consists of twoweeks of online display ad

logs collected during March 2015, including 10.2M ad impressions

and 159.9K clicks from 486 advertisers’ 2665 campaigns.

For iPinYou dataset, we follow the same processing method as

in [23] to select 16 fields to train our model. For Adform dataset,

we choose 14 fields data to train our model, which are categorised

into user information, ad information and context information. The

user information includes user country ID, which shows the

region of the user, log date and log time, which show the time

dynamics of user’s online behaviour, and visited domains and

visited logpoints which show the user’s browsing history. The

ad information includes creative size, position ID, showing
the ad’s basic information, client ID, showing the advertisers

that the ad belongs to, representing the vertical of the ad, and

placement ID, showing which specific campaign the ad is from,

as well as inventory source ID which involves ad exchange

information. The context information includes OS ID and browser
ID, showing the device, operation system and browser information

of the user.

Experiment Protocol. The whole process of feature generation
is shown in Figure 4. For Adform dataset as example, the whole

dataset is divided into training, test and counting datasets, where the

test data is split from the last 7 days while the training and counting

datasets are split randomly from the previous 7 days. For counting

dataset, we use it for (i) building the feature index for binary features

and (ii) calculating the counting feature values like frequency and

average CTR values of each data instance. The reason we do this is

to make sure that the counting feature values are independently

generated from training or test datasets, so that overfitting can be

to-some-extent avoided and the process for generating binary and

counting features are the same tomake the comparison fair. Another

noteworthy point is that the model training has no dependency

with the training data instances as the counting feature values are

calculated based on the entire counting dataset.

For the experiment of cross domain learning, we divide the

datasets into different campaigns using client ID and placement

Learning over Categorical Data using Counting Features DLP-KDD’19, August 5, 2019, Anchorage, AK, USA

Indexing
features and

adding counting
values

Figure 4: Process of label counting feature and binary fea-
ture.

ID, we use the other 12 data fields to perform CTR estimation in

the experiment.

In the first stage of experiment, for each campaign, we will

compare the performances of binary and counting features using

logistic regression and GBRT, respectively, which is measured by

AUC.

In the second stage of experiment, we will apply counting fea-

tures in cold-start cross-campaign CTR estimation problems. Specif-

ically, from the perspective of an online advertising agent serving

for different clients’ campaigns, based on the information from old

campaigns, it hopes to get accurate CTR prediction results for new

campaigns without training new models but directly making use

the off-the-shelf models trained from the data of old campaigns. The

counting features are leveraged to help the agent to achieve this

goal and show they are superior to the traditional binary features.

To simulate the cross-campaign CTR estimation scenario, in

the experiment, the whole 14-day Adform data will be split into

sub-datasets based on the client ID so that in each subset all

impressions are from a unique client. As shown in Figure 5, we will

transform the categorical data in old campaign into binary features

and counting features, and train logistic regression models respec-

tively. When the data instances of the test new campaign arrive in

time sequence, the feature values will be updated automatically in

real time
2
, and CTR prediction is performed based on the model

trained from old campaigns (without any re-training) and feature

values updated from the test new campaign data.

6.2 Single Campaign CTR Estimation
We use the two datasets to compare the CTR prediction perfor-

mances of binary and counting features supporting logistic regres-

sion and GBRT model. The AUC and RMSE of all 9 campaigns in

iPinYou dataset is shown in Table 3 and the largest 10 campaigns

in Adform dataset is shown in Table 4, respectively.

From Tables 3 and 4, we have the following observations. When

employing linear LR, counting features have no higher performance

than binary features, which is reasonable because the counting fea-

tures’ dimension is much smaller than the binary features and its

2
The feature values are updated for each real-time collected mini-batch with the size

of 3000. Thus the ordering of the input data can be almost ignorable.

Match Binary
Features

Update
Counting

Feature Value

Predict

Predict

Figure 5: Estimate new campaign CTR using binary feature
and counting feature comparison.

Table 3: Single-campaign performance (iPinYou).

Binary Feature Counting Feature

Camp- LR GBRT LR GBRT

aign AUC RMSE AUC RMSE AUC RMSE AUC RMSE

1458 70.97% 2.85% 68.87% 2.91% 60.47% 2.85% 70.28% 2.85%
2259 71.24% 1.73% 67.16% 1.73% 66.84% 1.73% 67.12% 1.73%

2261 60.96% 1.68% 59.94% 1.68% 52.07% 1.68% 63.03% 1.52%
2821 59.63% 2.38% 61.45% 2.38% 53.96% 2.39% 61.84% 2.33%
2997 58.07% 5.68% 55.81% 6.94% 53.99% 5.68% 56.24% 6.09%

3358 79.08% 2.98% 78.17% 2.98% 69.89% 2.98% 79.20% 2.98%

3386 78.44% 2.77% 79.04% 2.77% 63.77% 2.78% 79.74% 2.82%

3427 73.46% 2.53% 72.54% 2.54% 60.47% 2.53% 75.25% 2.53%
3476 65.97% 2.32% 64.57% 2.31% 61.01% 2.32% 66.82% 2.32%

Table 4: Single-campaign performance (Adform).

Binary Feature Counting Feature

Camp- LR GBRT LR GBRT

aign AUC RMSE AUC RMSE AUC RMSE AUC RMSE

8908 80.26% 9.50% 84.42% 9.16% 72.99% 9.67% 83.65% 9.35%

14501 89.82% 7.90% 91.56% 7.26% 87.44% 8.21% 90.44% 7.36%

22134 67.12% 11.10% 84.13% 10.71% 62.60% 11.26% 83.96% 10.89%

1414 72.50% 17.72% 80.91% 16.95% 67.16% 18.04% 81.43% 16.90%
20224 90.02% 7.47% 94.16% 7.23% 79.59% 7.52% 94.02% 7.28%

16280 87.20% 4.30% 90.02% 4.09% 81.80% 4.51% 90.32% 4.20%

12482 80.13% 4.84% 83.38% 4.67% 76.62% 4.97% 82.05% 4.79%

1371 79.82% 9.28% 88.81% 8.55% 79.29% 10.99% 89.34% 8.54%
15140 85.50% 6.92% 90.19% 6.76% 77.39% 7.25% 90.44% 6.83%

20762 65.00% 2.02% 70.01% 2.02% 85.54% 1.71% 94.17% 1.93%

continuous value cannot take many advantages in a linear combi-

nation. However, with the non-linear tree model GBRT, counting

features provide highly comparable performance or even better per-

formance against binary features on both datasets. The reasons are

probably two-fold. First, the counting feature value is continuous,

which naturally fits the splitting process in tree model learning. On

the contrary, each binary feature only provides one splitting point,

i.e., 0 or 1. Second, the counting features are of low dimensions, i.e.,

32 dimensions for iPinYou dataset and 24 dimensions for Adform

dataset, while the binary features are of very high dimensions, i.e.,

0.96M for iPinYou dataset and 4.84M for Adform dataset. As such,

GBRT can easily make use of all counting features in the learning

and prediction process, while it is impossible to build a GBRT with

DLP-KDD’19, August 5, 2019, Anchorage, AK, USA Xuyang Wu, Xinyang Gao, Weinan Zhang, Rui Luo, and Jun Wang

●

●
●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

0.00%

50.00%

100.00%

−20.00% −10.00% 0.00% 10.00%
Binary Feature Performance Improvement

C
ou

nt
in

g
F

ea
tu

re
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

campaign

●●

●●

12482

1371

1414

14501

15140

16280

20224

20762

22134

8908

Figure 6: Performance comparison of binary and count-
ing feature for cross-campaign CTR after counting conver-
gence.

all of the binary features. Lots of binary features are given up when

learning a GBRT.

In sum, the result demonstrates the effectiveness of counting

features for discriminating the target values despite its heavy infor-

mation compression from binary features. The statistical counting

values make it feasible to compare different categories of each field

via these statistic counting values, which is, however, infeasible on

binary features.

Effective Counting Features Study. Below we show the count-

ing feature coefficients with high absolute values.

ad sizeavg + + + position
avg

++ browseravg +

exchange
avg

+ + + screen sizeavg ++ hour
freq

+

osavg + + + user agent
avg

+ exchange
freq

−

Here “+” means the positive impact on CTR prediction and “−”

means the negative one. It can be observed that 7 of 9 of the listed

effective counting features are average CTR favg as in Eq. (6), while

2 of 9 are frequency ffreq as in Eq. (5), which is intuitive. For

example, osavg is highly helpful for CTR estimation because the

users’ behaviour on different OSes are naturally discrepant; the

positive impact of hour
freq

means the volume-peak hours also bring

high CTR.

6.3 Cold-Start Cross-Campaign CTR
Estimation

The second stage of experiment is concerned with the investigation

of generalisation ability of counting/binary features in the scenario

of cold-start cross-campaign CTR estimation. The experiment is

conducted based on Adform dataset as it contains sufficient cam-

paigns in the same period to perform the cross-campaign learning

experiment. The dataset is split by client ID so that in each small

dataset there are only the impressions from one unique client. Par-

ticularly, we focus on reporting the clients with more than 500,000

logged ad impressions in order to make the experimental results

convincing. As such, 90 cross-campaign CTR estimation tasks are

studied in this stage of experiment.

Figure 6 demonstrates the result that the counting features in-

deed improve the performance for cold-start cross-campaign CTR

estimation. If we assume that the distribution of the new campaign

is identical to the old ones, the performance of the CTR should be

the same among all sub-dataset of the new campaign. We define

AUCbefore as the CTR prediction performance on the test new cam-

paign before any feature value update with the new incoming data.

In such case the model can only predict the CTR totally based on

the information (i.e., model parameters and feature values) from

the old campaign. We also define AUCafter as the AUC performance

of binary or counting feature after sufficient information of the

new campaign has been observed and its performance converges.

In Figure 6 we compare the ratio AUCafter/AUCbefore for binary

features and counting features, it shows that for binary feature

there is no improvement for about half cases and the overall value

is around 0 but for counting features the improvement is high: 80%

cases have positive improvement and 33% cases have improvement

higher than 25%. Note that in both binary and counting feature

settings, the model performs no learning on the new campaign

data. The value of each counting feature changes based on feeding

each data instance and as shown in Section 3.1. Such changes are

completed in O(1) time, which is highly feasible.

Figure 7 provides the further details of the result, where each

grid corresponds to the AUC performance improvement of a cross-

campaign CTR estimation task. The model is trained on one cam-

paign’s (Y-axis) data and tested on another campaign (X-axis). The

red grids indicate that the counting features perform better than

binary features, and the value shows its improved performance

in terms of AUC in percentage compared to binary feature. Con-

versely, blue grids indicate the counting feature performs worse

than binary feature, and thus the improvement value is negative.

The ratio (AUCbefore(count) − AUCbefore(bi))/AUCbefore(bi) is

calculated in Figure 7(a) to show how counting feature improves

the performance compared to binary feature before updating the

feature values. It can be obversed that with no observation of any

data of the test campaign, the counting features and binary features

are comparable.

In Figure 7(b) we show the same calculation for that but after

updating the feature values until convergence when observing

sufficient incoming data instance, without updating the model.

The ratio (AUCafter(count) − AUCafter(bi))/AUCafter(bi) is shown
in the matrix showing that excluding the diagonal in which the

train and test datasets are the same, in 61 out of 90 experiments

counting features perform better than binary features, much better

than that in Figure 7(a). This result demonstrates that the real-

time updating of counting feature value without the re-training the

model indeed brings an efficient way of cold-start cross-campaign

CTR estimation.

Finally, Figure 7(c) calculates the relative improvement of AUC

based on counting features over that based on binary features:(AUCafter(count)
AUCbefore(count)

−
AUCafter(bi)

AUCbefore(bi)

)/ (AUCafter(bi)
AUCbefore(bi)

)
. (18)

As a result, in 68 out of 90 cross-campaign CTR estimation tasks,

counting features provide better AUC improvement ratio than bi-

nary features. This is benefited from counting features’ advantages

of identical low-dimension feature space across different campaigns,

which effectively avoids feature discrepancy and provides good gen-

eralisation.

Learning over Categorical Data using Counting Features DLP-KDD’19, August 5, 2019, Anchorage, AK, USA

6.49%

4.84%

4.05%

8.28%

−5.56%

−26.09%

−2.51%

−0.31%

−7.13%

−12.76%

−0.83%

3.91%

15.57%

1.85%

−5.46%

−21.82%

3.51%

38.28%

−35.16%

5.70%

7.32%

−1.28%

5.74%

−4.37%

48.37%

−24.04%

21.48%

7.40%

2.27%

−18.57%

−11.14%

−2.88%

−12.35%

16.98%

−9.27%

−7.12%

−4.77%

−0.31%

−2.02%

0.63%

−16.30%

−25.60%

13.45%

−5.24%

−0.62%

28.69%

2.55%

7.43%

−21.78%

−9.14%

−13.79%

−46.78%

−34.81%

21.60%

−26.13%

4.61%

−20.90%

−4.05%

−10.66%

−11.90%

6.53%

12.61%

−13.67%

16.21%

−6.57%

6.59%

−1.05%

20.20%

−7.69%

23.20%

−4.47%

−2.29%

−13.11%

10.20%

−11.06%

4.88%

−7.24%

4.51%

−8.30%

26.54%

−0.99%

−12.97%

6.59%

0.15%

−8.68%

−8.65%

2.55%

7.32%

3.71%

2.32%

2.31%

26.66%

−24.32%

6.16%

−19.87%

5.53%

−11.40%

12.08%

2.04%

−14.68%

12482

1371

1414

14501

15140

16280

20224

20762

22134

8908

12482 1371 1414 14501 15140 16280 20224 20762 22134 8908
Test Dataset

Tr
ai

n
D

at
as

et

−0.3

0.0

0.3

Improv.

(a) Before counting value updating

−3.83%

12.32%

12.19%

60.00%

45.60%

−24.98%

28.84%

24.79%

7.73%

26.03%

0.88%

−2.52%

20.44%

14.49%

124.56%

−45.81%

66.87%

66.81%

−1.54%

11.15%

10.99%

3.59%

−2.00%

39.55%

70.40%

−1.19%

63.13%

20.11%

17.76%

0.89%

18.60%

3.76%

14.63%

1.02%

19.43%

−4.59%

5.67%

−1.38%

−1.38%

−0.58%

89.31%

14.74%

97.33%

41.75%

−1.58%

52.76%

29.44%

48.49%

77.57%

83.56%

−26.91%

−7.50%

−19.21%

16.62%

−42.05%

−5.14%

−14.12%

−13.02%

−18.18%

8.50%

15.86%

−4.77%

0.23%

3.97%

19.24%

5.45%

−6.41%

1.36%

3.97%

24.62%

5.99%

−2.66%

1.38%

12.26%

−24.33%

17.21%

−2.69%

−0.12%

−3.75%

48.20%

1.43%

−4.99%

10.44%

4.06%

−22.11%

−5.23%

−2.30%

2.30%

−1.51%

5.89%

25.70%

−13.28%

−0.53%

−2.23%

8.21%

−11.28%

8.90%

11.06%

−11.09%

0.97%

12482

1371

1414

14501

15140

16280

20224

20762

22134

8908

12482 1371 1414 14501 15140 16280 20224 20762 22134 8908
Test Dataset

Tr
ai

n
D

at
as

et

−0.4

0.0

0.4

0.8

1.2
Improv.

(b) After convergence

−9.69%

7.13%

7.82%

47.77%

54.17%

1.50%

32.15%

25.18%

16.00%

44.45%

1.73%

−6.19%

4.21%

12.40%

137.52%

−30.69%

61.21%

20.63%

51.85%

5.15%

3.42%

4.93%

−7.32%

45.93%

14.85%

30.09%

34.28%

11.83%

15.14%

23.89%

33.47%

6.84%

30.78%

−13.64%

31.62%

2.72%

10.97%

−1.08%

0.65%

−1.21%

126.17%

54.23%

73.93%

49.58%

−0.97%

18.70%

26.23%

38.22%

127.00%

102.02%

−15.22%

73.80%

23.92%

−4.09%

−21.55%

−9.31%

8.57%

−9.35%

−8.42%

23.16%

8.75%

−15.43%

16.10%

−10.53%

27.63%

−1.07%

−5.42%

−15.67%

12.64%

1.15%

10.95%

−0.38%

16.68%

1.87%

−14.92%

11.76%

4.91%

−4.43%

4.96%

17.12%

2.45%

9.18%

3.62%

3.90%

−14.71%

3.73%

−4.73%

−4.67%

−5.04%

3.49%

22.87%

−31.53%

31.44%

−7.90%

35.05%

−15.92%

22.90%

−0.91%

−12.87%

18.35%

12482

1371

1414

14501

15140

16280

20224

20762

22134

8908

12482 1371 1414 14501 15140 16280 20224 20762 22134 8908
Test Dataset

Tr
ai

n
D

at
as

et

0.0

0.5

1.0

Improv.

(c) Relative improvement

Figure 7: AUC improvement of counting features against binary features in cross-campaign CTR estimation.

In sum, based on the experiment results we claim that counting

features actually bring a better generalisation ability to the learn-

ing models and lead to higher AUC performance in the cold-start

cross-campaign CTR estimation, which is a problem of practical

importance for online advertising.

7 CONCLUSIONS
In this paper, we introduced the concept of counting features, which

is a novel statistics-based and highly scalable feature engineering

paradigm for big data. We performed both theoretic and empirical

analysis about counting features. Theoretically, we derived mathe-

matical relationship between the learned model weights based on

counting features and binary features, and then showed that such

highly compressed feature representation could lead to high gener-

alisation ability of the learning models. In the empirical study, we

conducted comprehensive experiments of ad CTR estimation tasks

based on two real-world large-scale online advertising datasets,

both with single-campaign and cross-campaign settings. We ob-

served that in the single-campaign setting, counting features pro-

vided highly comparable or even better prediction than binary

features. In the cold-start setting, we found the models trained with

counting features provided much higher generalisation ability in

cold-start campaign CTR estimation tasks with data, which is a

strong evidence of the effectiveness of counting features. To the

best of our knowledge, our work is the first systematical research

on counting features, both theoretically and empirically.

In the future work, we will perform deeper investigations on

more general learning scenarios with different counting features,

such as the non-binary regression and the multi-label classification

problems. Also, it will be interesting to test the model performance

with the ensemble of counting features and binary features. In

addition, as it transfers the high dimensional binary features into

low-dimensional continuous features, it is interesting to explore

the potential usage of counting features on deep learning models.

REFERENCES
[1] Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al. 2007. Anal-

ysis of representations for domain adaptation. NIPS (2007).
[2] John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation

with structural correspondence learning. In EMNLP.
[3] Leon Bottou. 2015. Two big challenges in machine learning. http://goo.gl/Ip0Kju.

ICML Invited Talk.

[4] Tianqi Chen. 2014. Introduction to Boosted Trees. https://homes.cs.washington.

edu/~tqchen/pdf/BoostedTree.pdf

[5] Hal Daume III and Daniel Marcu. 2006. Domain adaptation for statistical classi-

fiers. JAIR (2006).

[6] Pinal Dave. 2013. Big Data - What is Big Data - 3 Vs of Big Data - Volume, Velocity

and Variety. http://goo.gl/J7oLLd.

[7] Jing Gao, Wei Fan, Jing Jiang, and Jiawei Han. 2008. Knowledge transfer via

multiple model local structure mapping. In KDD.
[8] Thore Graepel, Joaquin Q Candela, Thomas Borchert, and Ralf Herbrich. 2010.

Web-scale bayesian click-through rate prediction for sponsored search advertising

in microsoft’s bing search engine. In ICML.
[9] Xinran He et al. 2014. Practical lessons from predicting clicks on ads at facebook.

In ADKDD.
[10] John Hopcroft and Ravindran Kannan. 2014. Foundations of Data Science. (2014).

[11] Kuang-chih Lee, Burkay Orten, Ali Dasdan, and Wentong Li. 2012. Estimating

conversion rate in display advertising from past erformance data. In ADKDD.
ACM.

[12] H Brendan McMahan et al. 2013. Ad click prediction: a view from the trenches.

In KDD.
[13] B Mirkin. 1976. Analysis of categorical features. Finansy i Statistika Publishers,

Moscow (1976), 166.

[14] Richard J Oentaryo, Ee-Peng Lim, Jia-Wei Low, David Lo, and Michael Finegold.

2014. Predicting response in mobile advertising with hierarchical importance-

aware factorization machine. In WSDM. ACM.

[15] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. 2011. Domain

adaptation via transfer component analysis. IEEE Transactions on Neural Networks
22, 2 (2011), 199–210.

[16] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. TKDE 22,

10 (2010), 1345–1359.

[17] Sinno Jialin Pan, Vincent Wenchen Zheng, Qiang Yang, and Derek Hao Hu. 2008.

Transfer learning for wifi-based indoor localization. In Proc. Workshop Transfer
Learning for Complex Task of AAAI.

[18] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D

Lawrence. 2009. Dataset shift in machine learning. The MIT Press.

[19] Edward C Real. 1996. Feature extraction and sufficient statistics in detection and

classification. In ICASSP. IEEE.
[20] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting

clicks: estimating the click-through rate for new ads. In WWW. ACM, 521–530.

[21] Sam Scott and Stan Matwin. 1999. Feature engineering for text classification. In

ICML.
[22] Ilya Trofimov, Anna Kornetova, and Valery Topinskiy. 2012. Using boosted trees

for click-through rate prediction for sponsored search. In ADKDD.
[23] Weinan Zhang, Shuai Yuan, and Jun Wang. 2014. Real-Time Bidding Benchmark-

ing with iPinYou Dataset. arXiv preprint arXiv:1407.7073 (2014).

http://goo.gl/Ip0Kju
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
http://goo.gl/J7oLLd

	Abstract
	1 Introduction
	2 Related Work
	3 Counting Features
	3.1 Introduction to Counting Features
	3.2 Relation to Binary Features
	3.3 Learning Models with Counting Features

	4 Synthetic Data Empirical Study
	4.1 Cold Start Study
	4.2 Data Drift Study

	5 Practice on Ad CTR Estimation
	5.1 Zero-Shot Cross-Campaign CTR Estimation
	5.2 Cross-Campaign Model Distance

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Single Campaign CTR Estimation
	6.3 Cold-Start Cross-Campaign CTR Estimation

	7 Conclusions
	References

