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HPE-CogVLM: Advancing Vision Language
Models with a Head Pose Grounding Task

Yu Tian, Tiangi Shao, Tsukasa Demizu, Xuyang Wu, Hsin-Tai Wu

Abstract—Head pose estimation (HPE) requires a sophisticated
understanding of 3D spatial relationships to generate precise yaw,
pitch, and roll angles. Previous HPE models, primarily CNN-
based, rely on cropped close-up human head images as inputs
and often lack robustness in real-world scenario. Vision Language
Models (VLMs) can analyze entire images while focusing on
specific objects through their attention mechanisms. In this paper,
we propose a novel framework to improve the HPE accuracy
by leveraging the object detection grounding capability of a
VLM, referred to as CogVLM. We empirically find that directly
LoRA fine-tuning of this VLM for the HPE task fails to achieve
desirable HPE accuracy, while some model merging methods
can improve accuracy but frequently produce blended invalid
response formats, struggling to handle both object detection
and HPE tasks simultaneously. To integrate HPE capability into
CogVLM effectively, we develop a novel LoRA layer-based model
merging method. This merging approach applies a high cosine
similarity threshold and a ‘“winner-takes-all” layer selection
strategy, aligning attention to the HPE task while preserving
original object detection knowledge. It successfully resolves issues
with blended invalid response formats and improves accuracy.
Results show that our HPE-CogVLM achieves a 31.5% reduction
in Mean Absolute Error over the current state-of-the-art CNN
model, 6DRepNet, in cross-dataset evaluation. Furthermore,
HPE-CogVLM outperforms both directly LoRA fine-tuned and
task arithmetic-based merged VLMs across all HPE metrics.

Index Terms—Vision language model, Model merging, Head
pose estimation, Visual grounding task, Catastrophic forgetting
problem.

I. INTRODUCTION

OWADAYS, the head pose estimation (HPE) technique

is applicable in various fields such as attention esti-
mation [1]-[3], face recognition [4]|—[7], customer behavior
analysis [8], [9ll, driver assistance systems [10]—[13] and
human-robot interaction [[14]. This task involves predicting
the Euler angles (yaw, pitch, and roll) of human heads from
images or videos. Recent research efforts on some CNN-based
models like 6DRepNet [[15]], HopeNet [[16] and WHENet [|17]]
have made significant advancements in HPE.

Despite the recent surge of interest in HPE, the application
of this technique still faces several challenges in real-world
scenario. The CNN-based models typically rely on narrowly
focused datasets such as 300W-LP [18] for training, and
validate on similarly constrained datasets like AFLW2000 [/18]]
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and BIWI [19]. These datasets primarily feature close-up
images focused on a single head, mostly displaying frontal
faces with yaw angles from —99° to 99°, instead of covering
the full range of head poses ranged from —180° to 180°. Ad-
ditionally, the frequent use of close-up images in these datasets
reduces input variability, leading to uniform backgrounds. This
uniformity could result in limited robustness in diverse real-
world environments. The DirectMHP [20] model attempts
HPE prediction in a one-shot manner trained on the full-range
HPE datasets, like Agora [21] and CMU Panoptic [22], but
this model lacks stability and struggles to balance the head
bounding box (BBox) detection and HPE task performance.
Consequently, the model’s effectiveness remains uncertain in
real-world settings.

The appearance of Large Language Models (LLMs) has
made substantial advancements in a wide range of appli-
cations, significantly enhancing our daily lives by offering
sophisticated assistance across various tasks. Recently, Vision
Language Models (VLMs) have attracted significant attention
for their capability to process multimodal information [23]-
[26]. By combining image and video understanding with
language processing, VLMs can effectively perform complex
tasks, such as visual question answering [23], [25], [27] and
visual grounding [26], [28]]. In this paper, we leverage the
attention mechanism of VLMs to enhance the robustness and
accuracy of the HPE task. The VLMs empower the model
to process the entire image while focusing specifically on the
head region, eliminating the need to crop out backgrounds.
This capability reduces the risk of overfitting to a limited set of
visual features and allows the model to leverage context from
the full scene. As a result, it enhances the robustness of tasks
that traditional CNN-based methods often struggle to address.
We validate this approach by integrating HPE functionality
into the grounding model of CogVLM [26]. The grounding
CogVLM’s capabilities include caption grounding, referring
expression generation, referring expression comprehension and
grounded visual question answering [26]. All of these func-
tionalities involve in the description of object localization in
the BBox format of [[z¢, yo, Z1, ¥1]] as shown in Figure Eka).
This BBox grounding capability provides a foundational skill
for learning the new HPE task introduced in this paper. By
leveraging this capability in designed prompts, our approach
can accurately identify the head position within the image,
even when multiple people are present in the image.

Despite its advantages, incorporating the HPE task into the
grounding CogVLM introduces several challenges. First, VLM
tasks such as image description, visual reasoning, and visual
perception usually contain answering questions with natural



language responses. In contrast, our HPE task requires the
VLM to produce precise numerical Euler angles. Although
the grounding CogVLM can predict BBoxes, indicating its
ability to produce numerical responses, the HPE task is signif-
icantly more complicated. HPE requires predicting the human
head’s orientation in terms of yaw, pitch, and roll angles,
which involves interpreting 3D orientation from 2D images.
This introduces additional dimensions of depth and angular
perspective not required in the basic BBox detection task.
Therefore, it raises the challenge of whether the grounding
model can provide HPE answers with much higher accuracy.
Secondly, catastrophic forgetting [29]-[31]] poses a significant
challenge in fine-tuning LLMs. The catastrophic forgetting
problem is a phenomenon that LLMs tend to forget previously
learned information when acquiring new data. Although ex-
tensive research has been conducted on mitigating catastrophic
forgetting in general tasks, there is currently a lack of research
specifically addressing this issue within the context of complex
grounding tasks. Lastly, the original grounding CogVLM only
involves in outputting responses with natural languages and
BBoxes in [[zg, Yo, 21, y1]] format. In this paper, we introduce
a new format {yaw_angle, pitch_angle, roll_angle} for
answering HPE prompts as shown in Figure[I(b). This enriches
the knowledge of the original grounding CogVLM, meanwhile
increasing the complexity of output formats. Empirically, we
have observed that the directly LoRA fine-tuning and
model merging methods frequently generate blended invalid
outputs like [[xg, yo, yaw_angle}, which is referred as invalid
answers in this paper. More invalid answers are detailed in
Table [

In this paper, for addressing the catastrophic forgetting
problem in grounding tasks, we evaluate and improve the data
rehearsal methods [29], that were originally used in non-
grounding VLMs. The results show that the visual grounding
task, which demands accurate numerical outputs, requires a
significantly larger rehearsal ratio than non-grounding VLMs.
Here, the rehearsal ratio represents the percentage of im-
ages randomly selected from earlier training phases that are
reintegrated during the training of new tasks [29], [30]. To
improve HPE accuracy and address blended invalid outputs,
we propose and validate a model merging method based
on LoRA layers. Utilizing this approach, our model demon-
strates exceptional robustness, achieving a 31.5% reduction
in Mean Absolute Error (MAE) of Euler angles, compared
to the CNN-based state-of-the-art (SOTA) in cross-dataset
evaluations. Furthermore, we compare our LoRA layer-based
merged model with both the directly LoRA fine-tuned model
and the task arithmetic-based merged model within CogVLM.
Our approach consistently shows superior performance in both
of MAE and invalid answer ratio reduction. Our contributions
can be concluded as following:

o Our work pioneers the improvement of HPE tasks through
leveraging the visual grounding capability of CogVLM,
demonstrating the VLM’s ability to manage complex
3D spatial perception while retaining existing object
localization knowledge.

o To the best of our knowledge, this is the first work to

% Where is the person on the right? [IMAGE]
[«

[[477,112,919,860]]

(a) Example of CogVLM Grounding.

What's the head yaw pitch roll inside the bounding box
[[506,287,627,501]]7 [IMAGE]

Our Fine-Tuned model with HPE capability: The head
orientation angles are {342,338,004}.

[E g0

(b) Example of HPE-CogVLM.

Fig. 1: Examples of CogVLM and HPE-CogVLM. (a) shows
an example of CogVLM grounding capability, which demon-
strates the original grounding CogVLM’s ability to identify
objects based on prompts, a foundational skill useful for HPE
task. (b) displays a visualization of head orientation predicted
by our HPE-CogVLM from the CMU Panoptic dataset, using
Euler angles. The head pose labels are depicted with pitch
(red axis), roll (green axis), and yaw (blue axis) angles, each
indicated in their respective directions.

explore the issues of catastrophic forgetting and blended
invalid response when multiple grounding tasks are in-
volved.

e We propose a novel LoRA layer-based model merging
method that adopts a “winner takes all” strategy, sig-
nificantly outperforming the CNN-based SOTA, directly
LoRA fine-tuned VLM, and task arithmetic-based merged
VLM in terms of MAE and invalid answer ratio reduc-
tion. This demonstrates our method is able to achieve
outstanding robustness and effectiveness in the HPE task,
and holds potential for broader application in various
grounding tasks.

II. RELATED WORK
A. Head Pose Estimation (HPE)

Traditional approaches for HPE include both landmark-
based and landmark-free methods [34], [33]]. Landmark-
based methods rely on detecting specific facial landmarks,



such as the eyes, nose, and mouth, to estimate head orientation.
While these methods perform well under controlled conditions,
they struggle with full-range HPE because extreme head poses
often obscure facial features, making it challenging to detect
landmarks accurately [36]. Given our focus on full yaw range
HPE, we prioritize landmark-free approaches, which are better
suited for this task. Under this approach, several models
divide continuous rotation variables into discrete bins for
classification purposes [[16f, [17], [37]-[39]. Besides those,
FSA-Net [40] employs a stage-wise regression and feature
aggregation scheme to predict Euler angles. Meanwhile, mod-
els such as 6DRepNet [[15] and TriNet [41] take a different
approach by estimating the rotation matrix instead of directly
predicting Euler angles. Despite their potential, CNN-based
methods face significant robustness issues in real-life scenar-
ios, often struggling with lighting variations, occlusions, and
complex backgrounds. In this paper, we use several traditional
CNN-based landmark-free HPE approaches as baselines. This
allows us to assess conventional limitations and benchmark
the effectiveness of our proposed method.

B. Grounding in Vision Language Models

Some VLMs with grounding capabilities can provide ac-
curate BBox information in the format of [[zg, Yo, 1, Y1]]
based on specific prompts [26], [42]—[44]. This functionality
is crucial for tasks requiring precise spatial awareness, like
object detection and image captioning, as accurately identi-
fying object positions enhances visual scene understanding.
Unlike traditional BBox prediction task, HPE task requires a
understanding of 3D spatial relationships to produce accurate
Euler angles in the format of {yaw_angle, pitch_angle,
roll_angle}. Most existing VLM are not inherently designed
to handle such queries, as they typically output 2D BBoxes
rather than 3D rotational data. Currently there is limited
research investigating the effectiveness of VLMs in HPE task.
While some related efforts exist, such as the work on CLIP-
Gaze [45], which focuses on the gaze estimation task by
using CLIP [46] model, CLIP-Gaze is limited to applications
requiring only a narrow yaw angle range and does not address
catastrophic forgetting, leading to a loss of CLIP’s multi-task
capabilities.

C. Model Merging in LLMs

There has been extensive exploration of model merging
techniques designed to enhance the capabilities of LLMs.
These methods aim to combine multiple LLMs, each with
specialized functionalities, into a unified model capable of
addressing a range of tasks across various domains. The typical
merging methods [47]-[53]] usually apply rules or algorithms
to trim or merge the parameters of LLMs. For example, task
arithmetic [47]] defines arithmetic rules to incorporate new
capabilities or delete undesired ones, allowing task-specific
parameters to be adjusted in a controlled manner. Other
approaches, like evolutionary model merging [53|] leverage
evolutionary algorithms to iteratively optimize the merging
process. These algorithms evaluate multiple merging con-
figurations across generations, selecting the most effective

combinations based on defined fitness criteria. However, we
have empirically found that existing merging methods usually
produce blended invalid outputs, when dealing with multiple
grounding tasks that require distinct output formats. To address
this challenge, we propose a novel model merging method
designed specifically to mitigate blended invalid outputs.

D. Catastrophic Forgetting Problem

Catastrophic forgetting has been a significant issue that
limits the effectiveness of LLMs, as they tend to forget
previously knowledge when learning new knowledge. This
problem is particularly pronounced in continual learning set-
tings, where models are sequentially exposed to new tasks
and risk losing their ability to perform earlier ones [54]. The
rehearsal method [29]-[31]], [55], [56] is the most widely
used method to mitigate catastrophic forgetting. It involves
reusing a small portion of old task datasets into the new
task fine-tuning process. By periodically revisiting earlier
knowledge, the model maintains a balanced representation of
all tasks, reducing the likelihood of forgetting. Despite these
advancements, catastrophic forgetting remains under-explored
in grounding tasks, which require precise numerical outputs.
In this paper, we evaluate and refine the rehearsal method for
grounding tasks, aiming to balance prior knowledge retention
with effective adaptation to new tasks.

III. HPE-CoGVLM FRAMEWORK

The proposed framework of HPE-CogVLM as shown in
Figure [2] is structured through a multi-stage process. Each
stage of this framework is designed to enhance different
aspects of the model’s capabilities, gradually refining the
parameters to balance HPE and BBox tasks. The fine-tuning
process at each stage follows the CogVLM’s fine-tuning
scriptsﬂ which implement LoRA [32] across transformer
blocks, including the query, key, value of attention layers
and dense layers. Subsequently, the LoRA matrices of each
layer are accumulated into the corresponding layer in original
model. To support this multi-stage process, the framework
utilizes a variety of datasets, each serving a distinct role in
model training and evaluation. Table [[| provides an overview
of how these datasets contribute at different stages, such as
enhancing human head BBox detection, improving HPE task
accuracy, and preventing catastrophic forgetting. Below is a
detailed description of each stage in the framework:

A. Stage 1: Pre-training of the Original Grounding CogVLM
on Weak Label Data

As indicated in the CrowdHuman dataset [[57] functionality
column of Table [, the primary goal at this initial stage is
to train the model to develop its capability for human head
BBox detection. Additionally, this stage acts as a warm-up for
the model’s HPE capability by utilizing weak label images.
This prepares the model to initiate the HPE task in real-world
scenarios.

Uhttps://github.com/THUDM/CogVLM
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Fig. 2: The framework of integrating HPE task into the original grounding CogVLM. This diagram illustrates our multi-stage
integration process of HPE task into the original grounding CogVLM model with the information of dataset usages, designed

prompts and model merging strategy.

TABLE I: A detailed overview of various datasets used in our framework.

# of Images |  # of Heads

‘ Dataset

Task ‘ ‘ Usage ‘ Functionality
| | Train Test | Train Test | |
] Focus on human head BBox detection
Weak Label Images ‘ CrowdHuman [57] ‘ 11,731 - ‘ 94,795 - ‘ Stage 1 ‘ Warm-up for HPE task using weak label images
. ] Training with precise HPE labels from synthetic images

Task-specific Images | Agora [21] ‘ 9,654 - ‘ 64,187 - ‘ Stage 2, 4 ‘ Focus on HPE task to improve accuracy

Refcoco [28] 42,404 - - Preventing catastrophic forgetting with Refcoco/+/g training set
Rehearsal Images Refcoco+ [28] 42,278 - - Stage 4

Refcocog [58] 42,226 - - Investigating rehearsal ratio optimization

CMU Panoptic [22] ) 16,216 ) 32,738 Evaluating the accuracy of the HPE task on CMU Panoptic test set

. Refcoco [28] - 3785 - -

Evaluation Images Refcoco+ 28] ] 3773 ] R Stage 5

Refcocog | 58:\ ] 5003 } B Evaluating the BBox detection knowledge on Refcoco/+/g test set

To achieve this, the original grounding CogVLM undergoes
pre-training on the CrowdHuman dataset, which consists of
images of real people in diverse scenes. Since the original
CrowdHuman dataset provides only accurate head BBox an-
notations and lacks ground truth (GT) annotations for HPE, we
infer the weak HPE annotations using 6DRepNet. Therefore,
the output model from this stage is termed as weak label
CogVLM as shown in Figure 2] As the CrowdHuman dataset
offers a rich collection of human head images in various poses
and contexts, this approach enables the model to accurately lo-
cate the BBoxes of human heads and establishes a foundational
understanding for the subsequent HPE task.

B. Stage 2: Supervised Fine-tuning of the Weak Label
CogVLM on Task-specific (HPE) Data

Following the pre-training stage, the model progresses to a
supervised fine-tuning phase which is exclusively trained on
task-specific HPE images. As shown in Table [[, we utilize the
Agora dataset as the task-specific images. Unlike the broader

CrowdHuman dataset used previously, the agora dataset con-
sists of synthetic images that offer more accurate annotations
tailored to capture precise head pose information. The detailed
annotations in this dataset allow the model to focus on subtle
variations in head orientation, enhancing its ability to make
fine-grained predictions. This stage focuses on improving the
HPE accuracy, addressing the weaknesses in the weak label
model’s performance due to lower-quality annotations. The
output model is referred as the HPE-oriented CogVLM as
shown in Figure[2] This refined model combines the real-image
exposure and contextual background knowledge gained from
the previous stage with the task-specific precision acquired in
this stage.

C. Stage 3: Layer-based Merging between Original Ground-
ing CogVLM and HPE-oriented CogVLM

During this key stage, the original grounding CogVLM is
merged with HPE-oriented CogVLM (from Stage 2) based on
cosine similarity criteria. In our framework, cosine similarity



is calculated as the average cosine similarity between the layer
parameter tensors of the original grounding CogVLM and
the HPE-oriented CogVLM along the last dimension. Cosine
similarity is used to gauge the amount of information shared
between layers. The threshold of cosine similarity can help
to determine whether layers from the HPE-oriented CogVLM
should be integrated into the final model. Since LoRA fine-
tuning is applied in previous stages, most of the original
model parameters are only minimally altered, necessitating
a high threshold for cosine similarity. In our experiments,
We empirically set the threshold at 0.95. If the similarity
falls below this threshold, we opt to completely retain the
original knowledge. Otherwise, if the similarity exceeds the
threshold, which indicates a substantial overlap in information
due to the stringent criteria, we select the entire layer from
the HPE-oriented CogVLM to guarantee the minimal risk
of losing important existing knowledge. Consequently, the
merging criteria is detailed as below:

e« We calculate and rank the cosine similarities across all
layers from both models, and always select the layer
from the original grounding CogVLM model within the
smallest 1% of cosine similarities.

o When the cosine similarity between two layers from each
model is less than the threshold, we also select the layer
from the original grounding CogVLM.

o Otherwise, we choose the layer from the HPE-oriented
CogVLM.

Precedent methods usually involve in directly LoRA fine-
tuning or merging models at the parameter-level by setting
hyper parameters and developing algorithms to discard and
merge specific parameters [47], [51]-[53]]. However, we em-
pirically find that directly LoRA fine-tuning does not achieve
the desired HPE accuracy, and existing merging methods can
achieve better accuracy but struggle when handling multiple
grounding tasks with different output formats. They often
blend output structures, which leads to invalid answers. For
example, when we query with HPE prompts, the merged
model may return a NLP response like “a person of head”
or provide nonsensical responses like “[[999,231,123,389}”.
More examples are detailed in Table To address these
issues, we set a high cosine similarity threshold and adopt
a “winner-takes-all” method to select entire layers from ei-
ther the original grounding CogVLM or the HPE-oriented
CogVLM. This enables the merged model’s attention to align
with the new HPE task at minimal cost. By applying a high
similarity threshold, we introduce new knowledge only when
there is substantial informational overlap between the two
models, ensuring that even when a layer is chosen from
the HPE-oriented model, existing knowledge remains well-
preserved. This approach minimizes attention loss while also
aligning the model effectively with the new task. Although this
new capability introduced at this stage may be basic, they lay
a strong foundation for further refinement, allowing the model
to build on this baseline effectively in stage 4. Additionally, by
incorporating entire layers rather than individual parameters,
the method preserves the integrity of the model’s structure,
reducing the risk of response blending when handling multiple

grounding tasks with varying requirements.

D. Stage 4: Continual Fine-tuning of Layer-based Merging
CogVLM on Mixture Data

After merging, the layer-based merging CogVLM undergoes
an additional round of fine-tuning with both the task-specific
HPE images and the rehearsal images. The optimal rehearsal
ratio for training rehearsal images is pre-defined during Stage 1
by running several parallel experiments. In these experiments,
we tune the original grounding CogVLM with weak label
images, each combined with varying proportions of rehearsal
images (0%,1%,10%,25%). The rehearsal ratio that yields
the best performance is then used to fine-tune the merged
model in this stage. Unlike the fine-tuning in stage 2, this
phase involves only a brief period of fine-tuning, less than
one epoch. The rationale for incorporating additional brief
fine-tuning is that while layer merging maintains parameter
integrity and optimize model’s focus, it lacks the fine-tuned
parameters necessary to enhance HPE prediction accuracy. In
our approach, the merging model can be quickly fine-tuned to
deliver accurate numerical predictions. The final output model
of this stage is HPE-CogVLM as shown in Figure

E. Stage 5: Evaluation of HPE-CogVLM on Test Data

To demonstrate the robustness of our model, we utilize
real-world CMU Panoptic images to evaluate the model’s
performance on the HPE task. Meanwhile, we use rehearsal
test datasets to assess the model’s performance on the BBox
prediction task.

Compared to directly LoRA fine-tuning and some model
merging methods, this framework ensures that HPE-CogVLM
maintains a high level of accuracy in HPE task, effectively mit-
igating the issues of blended invalid outputs and catastrophic
forgetting problem. Experimental results will be shown in the
section [V]

IV. EXPERIMENTS SETUP
A. HPE Task Prompt Design

In some traditional CNN-based models, such as 6DRepNet
and HopeNet, cropping the human head region is required as
the initial step. In this paper, a new prompt method is pro-
posed, allowing us to train HPE task utilizing the information
of full images. In our prompts, BBox coordinates are leveraged
to specify the human head of interest when multiple people
are present. Therefore, the system is capable of effectively
focusing on specific heads, which makes it easier to reduce the
need for labor-intensive manual annotations and automate the
inference process. Meanwhile, the global features from self-
attention and head of interest features from cross-attention are
both learnt to improve the robustness of HPE task. Figure
[ (b) illustrates a sample of our custom-designed prompts
and responses tailored for the HPE task, demonstrating how
the system interprets and responds to specific queries. Ad-
ditionally, table [lI| provides more examples of prompts and
responses for the HPE and BBox prediction tasks. The BBox



TABLE II: Prompts and Responses Design for HPE Task.

BBox Prediction Task

Designed Prompt

How many human heads are in this image and what are the head bounding boxes?

Correct Answer

Their head bounding boxes are [[106,168,148,242;245,168,270,230]].

[[000,111,222,333... (Recycled output error)
{112,432,211} (Angle format output error)

Invalid Answer (Reason)

A man in Red (NLP output error)

[[212,123,212} (Mixed output error)
[[234,134,100,111]] (Logical error)

Head Pose Estimation Task

Designed Prompt

What is the head yaw pitch roll inside the bounding box [[106,168,148,242]]?

Correct Answer

The head orientation angles are {072,354,002}.

{112,432,211,201} (Wrong number error)
[[234,134,100,111]] (BBox format output error)

Invalid Answer (Reason)

A person head (NLP output error)

[[212,123,212} (Mixed output error)
{999,389,001} (Logical error)

format adheres to the specifications set by CogVLM [26].
Euler angles in the output are first converted to positive
floats. These values are then rounded to the nearest integer,
formatted as strings with a fixed length of three characters,
padded with zeros where necessary. This table also includes
several typical examples of invalid answers to highlight how
invalid answers can lead to completely ineffective outputs
when multiple grounding tasks requires accurate numerical
output varied in range and quantity. In response to these issues,
we define a new metric described in Section [[V-D] to assess
the model’s availability.

B. Datasets

Table [[joutlines datasets used in various stages of our frame-
work. The CrowdHuman dataset [57]] serves as the pre-training
dataset due to its extensive collection of human images. Its
head pose annotations are derived from pseudo-labels inferred
by the pre-trained 6DRepNet [15]] model, and thus are referred
as weak label images. It enables the model to obtain the
capability of detecting real human heads and warm up the HPE
task in stage 1. The synthetic Agora dataset [21]] serves as the
task-specific HPE images, which encompasses full-range of
human head yaw angle images and provides the GT of SMPL-
X parameters [59]. Its head pose annotations are generated
using the method of DirectMHP [20ﬂ This dataset is used in
stages 2 and 4 of our framework to enhance HPE accuracy. The
Refcoco [28]], Refcoco+ [28]], and Refcocog [S8] train datasets,
which are originally utilized by CogVLM to learn BBox
prediction, are chosen as rehearsal images to help mitigate
the catastrophic forgetting of existing BBox capability. In
our experiments, various portions of the rehearsal images are
applied to determine the optimal rehearsal ratio [29], [30].

For evaluation, a subset of the CMU Panoptic dataset serves
as the test dataset for evaluating HPE task, as its panoptic
images of real people closely mirror real-life scenarios. The
selection of images and labels follows the DirectMHP ap-
proach [20]. To evaluate object BBox localization, the test

Zhttps://github.com/hnuzhy/DirectMHP

datasets including testA and testB data from Refcoco and
Refcoco+, as well as the test dataset from Refcocog, are
selected as the BBox evaluation datasets.

C. Implementation Details

Throughout the LoRA fine-tuning process, a LoRA rank of
10 is used. The learning rate of 1 x 10~ is used in pre-training
stage. All other training parameters follow the default settings
of the CogVLM. The experiments are performed on using two
NVIDIA A100 80GB GPUs with a training batch size of 8.
The training processes in stages 1, 2, and 4 of our framework
cost 20, 50, and 10 hours, respectively.

D. Evaluation Metrics

We define four evaluation metrics for assessing HPE and
BBox prediction tasks as follows:

Angle Error Ratio (Eue): Eangle = T ? where eangle
denotes the number of invalid HPE answers and ¢4 denotes
the number of total HPE answers. This new metric is defined to
assess the capability of models to provide relevant numerical
outputs for HPE task. When we prompt with a HPE query, the
CogVLM could produce irrelevant responses such as an nat-
ural language processing (NLP) task response like “a person
head”, a BBox task response like “[[111,222,333,444]]”, or a
blended response like “[[111,999,999,99}” as shown in Table

BBox Error Ratio (Eppox): Epbox = is;zx, where eppox denotes
the number of invalid BBox answers and t,,x denotes the
number of total BBox answers. This new metric is defined to
assess the capability of models to provide relevant numerical
outputs for BBox prediction task.

BBox accuracy (ACC.): Acc. = 2, where m denotes the
number of valid BBox answers with IoU > 0.5 and m denotes
the number of total valid BBox answers. A BBox prediction
is considered to be accurate if the intersection over union
(IoU) between the GT and the prediction exceeds 0.5 [28].
And the invalid answers are excluded from accuracy and MAE
calculation.

Cangle
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MAE of Euler angles (MAE): For the HPE task, the MAE
between the GT Euler angles and the predicted Euler angles
is defined as follows:

IR 1 A
MAE = — . o_A,_A/, A — A 1
anln(360 |A; il [4i i) (M

i=1

where A; represents the GT’s Euler angles, A; represents the
predicted Euler angles, and variable n denotes the number
of valid HPE answers. The MAE is measured in a circular
manner rather than linearly, leading to the inclusion of a term
that minimizes the difference between the predicted and actual
angle by considering a full 360-degree rotation [15]], [20]. In
this paper, the MAE value is considered as the average of
MAE for yaw, pitch and roll Euler angles.

E. Baseline Methods

In this paper, three types of baseline methods are considered
to be compared with our HPE-CogVLM.

Traditional CNN-based models, including 6DRepNet,
HopeNet and WHENet, serve as the baselines for CNN-based
approaches. The 6DRepNet model, recognized as the current
SOTA, is specifically retrained and tested on the same Agora
and CMU datasets used in the VLM experiment to ensure a
fair comparison. This model is trained 100 epochs, and the best
MAE is selected for baseline analysis with our HPE-CogVLM.
The pre-trained models of HopeNet and WHENet are utilized
because HopeNet scripts are hard-coded and WHENet training
scripts are not publicly available.

Non-merging CogVLM, directly LoRA fine-tuned model
without applying model merging technique, serves as a com-
parison point to evaluate the effectiveness of our merging
approach versus the LoRA fine-tuning only method [29]-
[31]. The difference of Non-merging CogVLM and our HPE-
CogVLM methods is that the Non-merging CogVLM bypasses
stages 2 and 3, instead it undergoes significantly more training
iterations in stage 4 which is equal to the total iterations of
stages 2 and 4 in the HPE-CogVLM framework. For examples,
our HPE-CogVLM is fine-tuned 25k and 5k iterations in stages
2 and 4 respectively, while the Non-merging CogVLM is
solely fine-tuned in stage 4 for 30k iterations. This ensures
fair comparison with respect to HPE task training iterations.

Task Arithmetic (TA) merging CogVLM, which adheres
to our framework but replacing the layer-based merging with
TA based merging, is to provide a baseline for comparing
our merging approach with another merging method. The TA
merging process is chosen as it forms the foundation for many
other merging algorithms [51]], [52]. In this process, we set
the lambda parameter of task arithmetic to 0.5 [47]], assigning
equal importance to both the BBox prediction task and the
HPE task.

V. EXPERIMENTAL RESULTS
A. Baseline Comparison

The results in Table [ITI] show the performance comparison
between our HPE-CogVLM and various baselines described in

Section In comparison with traditional CNN-based mod-
els, our HPE-CogVLM presents the significantly lower MAE.
The HPE-CogVLM MAE is 75.1%, 66.8%, and 31.5% lower
than WHENet, HopeNet, and 6DRepNet, respectively. The
CNN-based models also perform worse than other CogVLM-
based models, which highlights the superior robustness of
VLM-based models over CNN-based models.

In comparison with Non-merging CogVLM, HPE-CogVLM
MAE is 10% lower than the Non-merging CogVLM. Mean-
while the Eapge of our model is 2.5 times smaller than the
Non-merging CogVLM. This indicates that our LoRA layer-
based merging method is more proficient in HPE than the
method that does not utilize any model merging technique.
Regarding the BBox results, the HPE-CogVLM’s BBox pre-
diction accuracy in test datasets is 0.6%, 0.5% and 1.1% lower
than the Non-merging CogVLM, however, the Non-merging
CogVLM costs five times more iterations for training rehearsal
images as discussed in Section This demonstrates that
even with only 1/5 of the rehearsal image training iterations,
our HPE-CogVLM achieves a comparable level of BBox
accuracy.

Comparing with TA merging CogVLM, our HPE-CogVLM
wins in all the metrics. For instance, when evaluated on test
datasets, the BBox prediction accuracy of the HPE-CogVLM
exceeds that of the TA merging CogVLM by 1%, 2.4%, and
1.7%, respectively. For the HPE task performance, Fapge Of
TA merging CogVLM is 68.9%, which is 1325 times larger
than that of HPE-CogVLM, indicating that only 31.1% of
the responses for the HPE task are valid. Due to the high
number of invalid HPE responses, the MAE metric becomes
ineffective for assessing the performance. This highlights that
even with an additional round of fine-tuning in stage 4, the
TA merging fails to produce relevant numerical responses
within our research domain, ultimately proving ineffective
for the HPE task. In contrast, by applying our LoRA layer-
based merging method, HPE-CogVLM successfully achieves
the lowest MAE and invalid output ratio, demonstrating the
superiority of this approach.

B. Catastrophic Forgetting Pattern in HPE Task

Table illustrates the profound impact of catastrophic
forgetting in a model trained for HPE task only using Agora
dataset. The Refcoco test accuracy starts at a high of 91.4%
at iteration 0, indicating initial proficiency in object detection.
As the number of training iteration increases and the model
is increasingly exposed to the HPE task, the Refcoco test
accuracy drastically decreases to 10.8% at iteration 1000. This
sharp decline illustrates significant forgetting of the original
BBox knowledge. Eppox rises significantly from 0% to 36.2%
at iteration 500 and then decreases to 10.2% at iteration
1000. This trend suggests that the model initially adapts to
the new task at the expense of previously learned behaviors,
causing a temporary increase in errors before stabilizing. The
MAE improves from “"Not capable” at iteration 100 to 42.16
at iteration 1000, indicating that the model begins to gain
proficiency in the new task. The decline in Eynge from 2.5%
to 0.1% implies that the model’s HPE output format becomes
more consistent over time.



TABLE III: Comparison of HPE-CogVLM performance with various baselines. The best results are highlighted in bold.

Model \ Refcoco Refcoco+ Refcocog CMU Panoptic

‘ Acctest  Epbox ‘ Accest  Ebbox ‘ Accest  Ebbox ‘ MAEest Eangle
WHENet - - - - - - 29.55 -
HopeNet - - - - - - 22.16 -
6DRepNet - - - - - - 10.74 -
Original Grounding CogVLM | 91.4% 0% 86.7% 0% 90.2% 0% - -
Non-merging CogVLM 91.1% 0% 85.2% 0% 88.9% 0% 8.18 0.13%
TA merging CogVLM 89.5% 0% 82.3% 0% 86.1% 0% 7.72 68.9%
HPE-CogVLM 90.5% 0% 84.7% 0% 87.8% 0% 7.36 0.052%

Note: A dash (“-”) indicates that the model is either not capable of performing the specified task or not applicable to the specified metric. For instance, WHENet, HopeNet, and
6DRepNet only accept detected human head bounding boxes for HPE prediction, meaning they cannot perform bounding box detection. As a result, their performance on the
Refcoco, Refcoco+, and Refcocog tasks is marked with a “-”. This applies to all the tables in the following results subsections.

TABLE IV: The impact of catastrophic forgetting when no
data rehearsal are applied.

Iterations Acctest Ebbox MAEtest Eangle
0 91.4% 0% - -
100 91.3% 0% - -
500 28.1%  36.2% 41.16 2.5%
1000 10.8%  10.2% 42.16 0.1%

TABLE V: Performance of weak label CogVLM under various
rehearsal ratios.

Iterations  Rehearsal Ratio  Accest Ebbox MAEtest  Eangle
0k 0% 91.4% 0% - -
10k 0% 21.8%  0.026% 17.20 0.48%
10k 1% 77.5% 0.19% 21.51 0.85%
10k 10% 91.0% 0% 19.32 0.32%
10k 25% 91.5% 0% 19.92 0.23%

What is particularly noteworthy in this scenario is the
nature of forgetting and learning displayed by the model—old
knowledge is significantly diminished before new knowledge
is solidified. This contrasts with human learning process,
where new and old knowledge often coexist and can even
enhance each other’s acquisition. In human cognition, learning
new tasks frequently involves integrating new information with
existing knowledge, without the catastrophic forgetting seen in
this model.

C. Selecting Optimal Rehearsal Ratios for Mitigating the
Catastrophic Forgetting Problem

Table |V| presents the performance of weak label CogVLM
across different proportions (0%, 1%, 10%, 25%) [29]-[31]
of the rehearsal dataset in stage 1. The primary aim is to
determine the appropriate data rehearsal ratio to retain old
knowledge for the fine-tuning in stage 4. The Refcoco test
accuracy at iteration 0 is 91.4%, indicating proficiency with the
BBox prediction tasks. After the training is finished, the results
demonstrate a clear trend that as the rehearsal ratio increases,
the Refcoco test accuracy substantially improves. Starting at
a low of 21.8% when no Refcoco data is used, the accuracy
spikes to 77.5% with just 1% of rehearsal ratio, eventually
reaching over 91% with 10% and 25% of rehearsal ratio. This
clearly shows that the more original task data used in learning

a new task, the less catastrophic forgetting occurs. In the Eppox
column, the consistently low Eppex values suggest that the
availability of BBox predictions tend to stabilize after 10K
iterations. MAE and Fjyuge for HPE task show a fluctuating
trend. Since the head pose weak label is provided for this
pre-training stage, they may not fully reflect the model’s
true HPE performance. Rehearsal ratios of 10% and 25%
are selected for the stage 4 experiment due to high refcoco
BBox prediction accuracy. These ratios are significantly higher
than the commonly used 1% rehearsal ratio in non-grounding
tasks [29], [30].

D. The Influence of Rehearsal Ratios on Multiple grounding
task Learning

Figure [3| presents comparative results for both the BBox
prediction task and the HPE task under two different re-
hearsal ratios in stage 4. Between the two HPE-CogVLM
models, the one with a lower rehearsal ratio (10%) achieves
a better MAE of 7.36, which is 12% lower than the 8.36
observed with the higher (25%) ratio. Conversely, the Refcoco
test accuracy improves slightly with higher rehearsal ratios,
showing increases of 0.3% compared to the lower ratio. The
similar phenomenon also presents in Non-merging CogVLM
and TA merging CogVLM results. The results clearly show
that a higher rehearsal ratio helps retain existing knowledge by
incorporating more data from previous tasks into fine-tuning,
but this comes at the cost of new task performance. So we
seek for balance between the retention of old knowledge and
the performance on new tasks. In our case, the 10% rehearsal
ratio achieves significantly better HPE performance, while the
BBox prediction is only slightly better with the 25% rehearsal
ratio. After balancing both factors, the HPE-CogVLM trained
with the 10% rehearsal ratio is chosen as the optimal model.

E. Performance of HPE-oriented CogVLM on HPE Task Only

In our framework, The HPE-oriented CogVLM from stage
2 stands out as the most effective model dedicated solely to
the HPE task. Table presents comparative performance
results of 6DRepNet and the HPE-oriented CogVLM, both
not accommodate BBox prediction capabilities, over similar
training epochs. The low Refcoco test accuracy of HPE-
oriented CogVLM is expected, given that no data rehearsal



TABLE VI: The HPE-oriented CogVLM model exhibits the highest HPE performance within our framework. The best results

are highlighted in bold.

Model EpOChS Acctest MAEtest MAEtrain Eangle
6DRepNet 3 - 12.70 9.40

6DRepNet 6 - 12.76 8.80

6DRepNet 9 - 11.44 7.90

6DRepNet 50 - 11.37 291

6DRepNet 100 - 11.4 2.23 -
HPE-oriented CogVLM 3 8.8% 6.40 - 0.0092%
HPE-oriented CogVLM 6 12.6% 6.31 - 0%
HPE-oriented CogVLM 9 11.0% 6.24 - 0%
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Fig. 3: The model performance under various rehearsal ratios
(10% and 25%). (a) shows the MAE results under rehearsal
ratio 10% and 25% on VLMs. (b) shows the Refcoco Test
BBox accuracy results under rehearsal ratio 10% and 25% on
VLMs.

is implemented in this stage so that the VLM can focus on
the HPE task learning. In terms of MAE metric, the HPE-
oriented CogVLM displays a gradual decrease in MAE from
6.4 at 3 epochs to 6.24 at 9 epochs. When compared our
model with 6DRepNet, in the same epoch, our MAE shows
much lower numbers than 6DRepNet. For example, in epoch 9,
MAE of HPE-oriented CogVLM is 6.24 which is 45.5% lower
than 6DRepNet. After extending the 6DRepNet training to 100
epochs, while its training MAE decreases from 9.40 to 2.23,
the MAE on the CMU dataset does not improve, remaining
stable around 11.4. This indicates that the model is over-
fitting to the training dataset, with no enhancement in cross-
dataset inference performance. This difference emphasizes the

superior performance of VLM than traditional CNN-based
models.

F. Visualization of Cross Attention Maps Supervised by De-
signed Prompts

Fig. 4: The visualization displays cross attention maps gener-
ated in response to our custom prompts. The left image shows
the attention map associated with the prompt “What is the head
yaw pitch roll inside the bounding box [[335,179,445,332]]?”
(BBox for the person on the left), and the right image
corresponds to the prompt "What is the head yaw pitch roll
inside the bounding box [[775,105,893,261]]7” (BBox for the
person on the right).

Figure [] provides a visual representation of cross attention
maps created in response to specific prompts when multiple
people are present in the image. The left image highlights the
model’s response to the prompt of HPE task within the BBox
[[335,179,445,332]]. It effectively focuses on the head of the
person on the left. The right image similarly demonstrates
the model’s precision in targeting the head of the person on
the right within the BBox [[775,105,893,261]]. These visual-
izations confirm the model’s accuracy in localizing attention
within specified areas, demonstrating strong capabilities in
spatial awareness. Moreover, they illustrate that CogVLM is
capable not only of generating BBox outputs in response to
queries but also of interpreting and responding to BBoxes
specified within the prompts.

VI. CONCLUSIONS

In this paper, we present a framework that successfully
enhances the HPE task by leveraging the visual grounding
capabilities of CogVLM. Through a novel merging approach



that utilizes a high cosine similarity threshold and a “winner-
takes-all” layer selection strategy, we effectively integrate
HPE capabilities into the model while preserving the original
BBox knowledge. This method not only improves prediction
accuracy but also addresses the challenges of blended invalid
response formats. Additionally, we mitigate catastrophic for-
getting by optimizing the rehearsal ratio. Our experimental
results demonstrate that HPE-CogVLM achieves a substantial
31.5% reduction in MAE compared to the current CNN-
based state-of-the-art in cross-dataset evaluations. Further-
more, HPE-CogVLM consistently outperforms directly LoRA
fine-tuned model and task arithmetic-based merging model
in all HPE metrics, establishing it as a robust and effective
solution for complex multimodal grounding tasks.
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