N)
)
Check for
updates

Meta-Learning to Rank for Sparsely Supervised Queries

XUYANG WU, Santa Clara University, Santa Clara, CA, USA

AJIT PUTHENPUTHUSSERY, HONGWEI SHANG, and CHANGSUNG KANG, Walmart
Global Tech, Sunnyvale, CA, USA

Y1 FANG, Santa Clara University, Santa Clara, CA, USA

Supervisory signals are a critical resource for training learning to rank models. In many real-world search and
retrieval scenarios, these signals may not be readily available or could be costly to obtain for some queries. The
examples include domains where labeling requires professional expertise, applications with strong privacy
constraints, and user engagement information that are too scarce. We refer to these scenarios as sparsely super-
vised queries which pose significant challenges to traditional learning to rank models. In this work, we address
sparsely supervised queries by proposing a novel meta-learning to rank framework which leverages fast learn-
ing and adaption capability of meta-learning. The proposed approach accounts for the fact that different queries
have different optimal parameters for their rankers, in contrast to traditional learning to rank models which only
learn a global ranking model applied to all the queries. In consequence, the proposed method would yield signifi-
cant advantages especially when new queries are of different characteristics with the training queries. Moreover,
the proposed meta-learning to rank framework is generic and flexible. We conduct a set of comprehensive exper-
iments on both public datasets and a real-world e-commerce dataset. The results demonstrate that the proposed
meta-learning approach can significantly enhance the performance of learning to rank models with sparsely
labeled queries.

CCS Concepts: » Information systems — Learning to rank;
Additional Key Words and Phrases: Meta Learning, Learning to Rank, Sparsely Supervised Queries

ACM Reference format:

Xuyang Wu, Ajit Puthenputhussery, Hongwei Shang, Changsung Kang, and Yi Fang. 2024. Meta-Learning to
Rank for Sparsely Supervised Queries. ACM Trans. Inf. Syst. 43, 1, Article 14 (November 2024), 29 pages.
https://doi.org/10.1145/3698876

1 Introduction

Learning to Rank (LTR), which refers to machine learning techniques on automatically con-
structing a model from data for ranking in search, has been widely used in modern search engines
[44]. Typically, LTR involves creating a single ranking function that applies universally to all
queries to order items based on their relevance. The global ranking model is generally efficient

This work was completed as part of a summer internship program at Walmart Global Tech.

Authors’ Contact Information: Xuyang Wu, Santa Clara University, Santa Clara, CA, USA; e-mail: xwu5@scu.edu; Ajit
Puthenputhussery, Walmart Global Tech, Sunnyvale, CA, USA; e-mail: ajit.puthenputhussery@walmart.com; Hongwei
Shang, Walmart Global Tech, Sunnyvale, CA, USA; e-mail: hongwei.shang@walmart.com; Changsung Kang, Walmart
Global Tech, Sunnyvale, CA, USA; e-mail: changsung.kang@walmart.com; Yi Fang (corresponding author), Santa Clara
University, Santa Clara, CA, USA; e-mail: yfang@scu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1558-2868/2024/11-ART14

https://doi.org/10.1145/3698876

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

https://orcid.org/0000-0002-8807-0016
https://orcid.org/0000-0001-7141-1534
https://orcid.org/0009-0005-9856-9178
https://orcid.org/0009-0007-5305-8256
https://orcid.org/0000-0001-6572-4315
https://doi.org/10.1145/3698876
mailto:permissions@acm.org
https://doi.org/10.1145/3698876
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3698876&domain=pdf&date_stamp=2024-11-30

14:2 X. Wu et al.

and scalable since it can be reused without requiring separate training or tuning for each query.
Such an approach often delivers robust average performance and is easier to maintain in practice,
making it widely adopted in LTR. However, the global ranking approach may be sub-optimal for
individual queries as it tends to overlook query specificity and user intent. This is particularly
problematic given that relevant documents for different queries can have varying distributions in
the feature space, which a global ranking function might not adequately capture [2]. For instance,
considering two ranking features such as word matching and freshness, in queries like “running
shoes for flat feet,” emphasis may be placed on word matching over freshness, whereas queries
like “latest video games” would prioritize freshness. This variation necessitates the development of
query-specific rankers, as global models may not able to generalize across diverse queries. Different
queries prioritize different features, leading to domain shifts that can undermine the effectiveness
of models trained on different types of data. Query-specific models are desired in certain search
scenarios where the characteristics of queries and user intents may lead to distinct distributions of
relevant documents in the feature space, and offer the advantage of tailoring model parameters
to optimize retrieval for individual queries. The prior works in the literature [2, 11, 27] have also
advocated for constructing ranking functions on a per-query basis, recognizing the limitations of a
global ranking function.

Moreover, learning an effective ranking function often relies on the availability of a large amount
of labeled examples. It may be difficult to obtain sufficient labeled examples for many queries in
the real world such as domains where labeling requires professional expertise (e.g., biomedical and
legal search) and applications with strong privacy constraints [68] (e.g., personal and enterprise
search). User engagement data such as clicks/add-to-cart/purchase on e-commerce platforms are
indicative of individual users’ relevance judgments and are relatively easy to collect with low cost,
but queries with sparse user interaction are still frequently encountered on these platforms such as
queries for new products and tail queries. Additionally, due to certain biases in data collection and
the limited availability of labeled data, user interactions labels may not necessarily align with actual
user preferences [63]. We refer to the above scenarios where queries have limited supervisory
signals for LTR as sparsely supervised queries.

Sparsely supervised queries pose significant challenges to LTR models, especially when learning
query-specific rankers. First of all, traditional LTR methods typically require a large amount of
supervised data to optimize different ranking objectives, but this design is not intended to learn
“fast” from limited data. Although some recent works [34, 80] have attempted to dynamically adjust
the ranker’s optimization direction using online LTR with historical data and current real-time data,
these approaches often suffer from insufficient optimization efficiency, unmeasurable performance,
or performance that is inferior to offline approaches [55]. Moreover, even if an LTR model is trained
with a large amount of supervisory signals, when it encounters sparsely supervised queries at
runtime, it may not be able to generalize well. The scarcity or limited number of examples can have
a significant impact on inductive bias [7]. The characteristics of sparsely supervised queries could
be quite different from those of the training queries, which may lead to the domain shift problem
from training to prediction/inference. In addition, sparsely supervised queries usually result in a
high imbalance between positive labels and negative labels since irrelevant documents can often be
sampled from the dataset while relevant documents have to be labeled. There exist some works in
the literature that attempted to address the above respective challenges by generating synthetic
data or duplicating existing data to provide more informative training sets. For example, data
augmentation [60, 78], resampling methods [6, 15], and ensemble methods [23] were utilized to
alleviate data sparsity, balance relevance labels, and attempt to learn an unbiased model in training.
These methods have limited improvement in terms of model generalization due to insufficient data
and domain shift issues. And the small sample size and uneven distribution of labels can result in

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

Meta-Learning to Rank for Sparsely Supervised Queries 14:3

bias or difficulties in transferring knowledge, as well as slow adaptation to new queries, ultimately
limiting generalization. On the other hand, some works aim to mitigate the impact of noise and
bias through unbiased modeling perspectives and model adjustments [1, 17, 40, 41, 51, 53, 69, 79].
Generally, these methods model position bias by requiring extensive click logs. For instance, to
optimize position bias in the data, the concept of counterfactual Inverse Propensity Scoring
(IPS) was introduced in [1]. In our research scenario, there is a lack of positive sample data, which
increases the difficulty of modeling bias. Additionally, due to insufficient training samples, minor
propensities, and a large number of noisy clicks, counterfactual LTR systems frequently suffer from
excessive variance. Oosterhuis [51] proposed the DR estimator, which provides enormous decreases
in variance. These models have achieved remarkable success in the unbiased LTR field by using
more efficient estimators to correct the bias problem. Last but not least, the presence of sparsely
supervised queries complicates the development of query-specific rankers, as the straightforward
approach of training individual models for each query would only exacerbate data sparsity and
render the process infeasible.

Given these challenges, we turn to meta-learning [25], which has demonstrated its great success
in the setting of few-shot learning where a model can quickly adapt to a new task using only a
few data points and training iterations, as shown in a wide range of machine learning applications
including image classification, dialog generation [57], text classification [38], and recommendation
systems [18, 36, 43]. LTR for sparsely supervised queries shares similar characteristics with meta-
learning in a few-shot setting because it focuses on ranking items for a query which only has a small
number of labeled documents or supervisory signals. Inspired by the capabilities of meta-learning
in fast learning and improving model generalization, we propose a novel Meta-Learning to Rank
(MLTR) approach to address sparsely supervised queries. In scenarios where labeled data are
scarce and the distribution of labels is imbalanced, meta-learning can effectively utilize its efficient
learning and adaptability capabilities. Moreover, meta-learning can mitigate the impact of domain
shift by allowing models to quickly adapt to different data distributions through task-specific
training during the learning process and fine-tuning during inference.

In this article, we utilize the optimization-based meta-learning approach [25] to rapidly estimate
document relevance for a new query based on only a small number of labeled documents. For
each query in the meta-training process, there are two sets: training set and test set. The proposed
MLTR model performs local and global updates. During the local update, the algorithm adjusts the
parameter of the query-specific ranker on each training set (learning process). During the global
update, the algorithm trains the parameter of the meta-ranker to minimize the meta-loss with
the adapted parameters on the test sets (learning-to-learn process). Each query-specific ranker
only requires few labeled instances for fine-tuning as the meta-ranker is trained across all the
queries and the global ranking knowledge is transferred to each query-specific ranker as initial
model parameters before fine-tuning. The proposed meta-learning approach is an efficient way
to learn from limited data. To estimate document relevance for a new query, the ranker can then
be fine-tuned based on the limited amount of labeled documents. Due to the learning-to-learn
process, the model is able to quickly adapt to a new query. Query-specific rankers enable the model
to capture and adapt to the unique characteristics of each query, while the meta (global)-ranker
preserves scalability and efficiency across diverse queries. By leveraging the strengths of both
approaches, our method aims to balance scalability with specificity, ensuring robust performance
and leading to more precise and relevant results. In consequence, the proposed method leverages
the fast learning and adaptation capabilities inherent in the meta-learning framework, yielding
significant advantages especially when new queries are of different characteristics with the training
queries.

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

14:4 X. Wu et al.

Long-tailed queries can be naturally tackled by the proposed meta-learning approach. A portion
of these queries may only appear once, while others could appear multiple times, albeit less than a
few. Our proposed meta-learning approach can handle both scenarios through without fine-tuning
or with fine-tuning. For queries that appear only once, we may not use data from the same query
in training. For queries that appear more frequently, we can apply fine-tuning on unseen queries.
The experiments demonstrate performance improvements of the MLTR models over the baselines
under both scenarios. It is worth noting that the proposed approach is not limited to long-tailed
queries. Even with more frequently occurring queries, such as torso and head queries, the available
labels or user engagement data could be quite scarce, especially within a short timeframe since their
first appearance. To quickly learn good ranking functions for these queries is crucial for engaging
users in real-world search applications. Our work is centered on fast and efficient learning from
sparse labels, a focus we believe holds broad applicability across various search scenarios. The main
contributions of the article can be summarized as follows:

— We propose a novel meta-learning framework for search and ranking with sparsely supervised
queries. To the best of our knowledge, there is no prior work on adopting the optimization-
based meta-learning for LTR.

—The proposed MLTR model can leverage its strong generalization ability during training,
enabling it to sustain consistently stable performance in ranking tasks involving unseen
queries.

—The proposed MLTR model can quickly adapt to a new query with limited supervisory signals
and can yield query-specific rankers with optimal model parameters for individual queries.

—The proposed approach is generic and flexible and can be applied to any existing LTR models
to improve model generalization.

—We conduct a comprehensive set of experiments on four public LTR benchmarks and one
real-world product search dataset. The results demonstrate the effectiveness of the proposed
approach over the competitive baselines.

2 Related Work
2.1 LTR

LTR has gained much attention from the Information Retrieval (IR) research and industry
community, which aims to optimize the perfect search results. A series of LTR models have been
developed in the research community, mainly in two divisions. One division is based on Gradient
Boosted Decision Trees, which have been used by many production search systems [77]; the other
division is based on neural networks. With the intriguing interest in neural LTR models, a lot
of papers have been published, and researchers keep proposing state-of-the-art methods [19, 21,
22, 35, 59, 74]. The DSSM model, cited as [35], belongs to the category of representation-based
models. It operates by calculating the embeddings of a query and a document, which involves
averaging the word embeddings from their respective text fields. On the other hand, the interaction
BERT-based model, referenced as [22], employs a different approach. It concatenates the query and
document text fields into a single sentence, which is then fed through multiple transformer layers.
This approach has proven to yield state-of-the-art results, as cited in [19]. In recent few years, neural
LTR models gradually start to be launched on various commercial search engines successfully,
such as LinkedIn [29] and Taobao [76]. Han et al. [32] introduced TFR-BERT, a generic document
ranking framework that combines the power of LTR models and BERT. Wu et al. [73] proposed a
multi-task learning approach for the ranking problem to optimize the different engagement signals
simultaneously. Furthermore, some LTR models [4, 42, 46, 75] used effective negative sampling
technique to improve the efficiency of model training process and effectiveness of the resulting

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

Meta-Learning to Rank for Sparsely Supervised Queries 14:5

model by filtering out noise and reducing the redundancy of the query—document pairs. Lucchese
et al. [46] demonstrated the proportion of relevant documents to non-relevant documents highly
affects the quality of the learning-to-rank collections. Kanoulas et al. [42] illustrated the relevance
grade distribution in the training set is an important factor for the effectiveness of LTR algorithms.
While Neu-IR and traditional LTR models have shown promising results on large, well-labeled
datasets, their performance decreases when faced with sparsely labeled data. Conversely, the global
ranking function in LTR may not be optimal for document retrieval since it ignores differences
between feature distributions for each query [2]. Although Can et al. [11] and Dehghani et al. [21]
constructed a ranking function specific to each query, this approach is limited by its high cost and
low generalization ability due to the almost infinite number of queries and the unpredictable feature
distribution of unseen queries. Our proposed MLTR model, however, can effectively improve the
generalization of the LTR model on sparse datasets.

While traditional LTR models rely on manually annotated labels for supervision, click-based
LTR models harness user interaction logs as a guiding resource [39]. Initially, these models were
grounded in an online dueling-bandit framework [64, 80], evolving later to an online pairwise
method [52] for unbiased pairwise optimization in LTR. However, that click data are not entirely
reliable indicators of user preference due to various influencing factors beyond just preference [40,
61]. Addressing this, Yuan et al. [79] and later Joachims et al. [41] developed the first theoretically
unbiased LTR method, based on the premise that a user’s likelihood of examining an item is tied
to its rank position, with clicks primarily on items that are examined [17, 69]. They employed
counterfactual IPS estimation [62] to adjust for the biases inherent in these examination probabilities.
IPS-based approaches, combating biases like position bias [40], trust bias [1], and selection bias [53],
are prevalent in IR. Oosterhuis and de Rijke [54] enhanced these methods, accounting for potential
changes in the logging policy during data collection. Despite their widespread use, IPS methods
do grapple with high variance issues [30]. This opens avenues for future research into alternative
bias mitigation techniques, such as the doubly robust method [51]. Sample-based approximation
[49, 67] is typically employed in LTR scenarios where relevance is clearly established. Notably,
Oosterhuis [49] recently introduced the Plackett-Luce (PL)-Rank method, an efficient approach
for unbiased gradient estimation based on sampled rankings. Click-based LTR models aim to derive
unbiased ranking models from inherently biased user behavior data, demonstrating efficiency in
unbiased LTR area. However, our research doesn’t primarily focus on the bias in data collection
or usage. Instead, we concentrate on the application of meta-learning techniques to train robust
LTR-based models effectively, particularly in scenarios characterized by sparse datasets.

On the other hand, some works implement online LTR methods. For instance, Yue and Joachims
[80] introduced the first online LTR method, which utilizes online evaluation by sampling model
variants and comparing them with interleaving to identify better rankers, thereby improving
the entire system. Hofmann et al. [34] extended this by guiding exploration through reusing
previous interactions. However, these approaches are not always efficient and sometimes their
performance at convergence is much worse than offline approaches, especially in online settings
where performance cannot be measured, making early stopping unfeasible [64]. Addressing these
issues, our MLTR model can ensure more efficient optimization of traditional ranking model and
keep stable model generalization with low computational cost in sparse data experimental settings.

2.2 Sparsely Supervised Learning

Supervised learning algorithms have faced a challenge in handling sparse and imbalanced labeled
data. Previous techniques have typically addressed the negative impact of sparse data and imbal-
anced data distribution by optimizing the model or through data augmentation methods. From a
model perspective, Zhou et al. [82] proposed that existing methods for dealing with the challenge

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

14:6 X. Wu et al.

of few labeled examples often rely on semi-supervised learning techniques that exploit both labeled
and unlabeled data. Moreover, Sun and Hardoon [65] introduced an active learning strategy for
identifying informative examples that require manual labeling, which is particularly beneficial
when manual labeling resources are limited. Nonetheless, it is crucial to note that the inductive
bias of a model can be significantly impacted by having a limited number of examples, commonly
referred to as sparse data, as noted in [7]. From data augmentation perspective, resampling is a
typical technique for handling data imbalance in machine learning [28]. Data oversampling was
introduced by Chawla [14], who sampled the minor classes from the available data and included
them in the training process to mitigate the imbalance between major and minor classes. One of
the popular oversampling techniques is SMOTE [15], which has various adaptations such as those
proposed by [31, 33], and others. However, the learned supervised model has limit improvement
with duplicated data without new information and high risk of over-fitting. In the same way, Liu
et al. [45] employed data under-sampling as a technique to achieve a comparable amount of training
data in various classes by reducing the number of data in the major classes. The article referenced
as [75] reports on the use of a two-tower neural model that was trained utilizing a mixed negative
sampling technique alongside batch random negatives. However, this method may lead to a loss
of information during the reduction of training data through sampling. Data generation models
for informative data augmentation in LTR are proposed by Yu and Lam [78] and Qiu et al. [60], as
they believe that generating informative data is more beneficial than using resampling techniques.
Those models generated informative synthetic data based on Adversarial Auto-Encoder [48] and
Gaussian Mixture Variational Auto-Encoder (GMVAE) [24], respectively. Given the strong text
generation capabilities of Large Language Models (LLMs), many researchers [8, 20, 56] propose
using LLM-driven methods to generate pseudo-queries or relevance labels from existing collec-
tions. Both of them could generate new data given different query types and different relevance
levels. Resampling methods and data augmentation techniques have the potential to mitigate the
effects of imbalanced data in the training set; however, they have limited improvement on overall
model generalization.

2.3 Meta-Learning for IR

Meta-learning is also known as learning to learn, which aims to learn better algorithms, including
better parameter initialization, optimization strategy [3], network architecture [83], and distance
metrics [26]. Finn et al. [25] proposed a Model-Agnostic Meta-Learning (MAML) algorithm,
which trains a model on a variety of tasks, such that the model can be easily generalized to a new
task with a small number of gradient steps from a small number of data from that task. Also, a
lot of existing works have implemented the meta-learning approach in other research areas. Lee
et al. [43] proposed Meta-Learned User Preference Estimator (MeLU), which utilizes meta-
learning approach to deal with the cold start problem in the recommendation system. Cui et al.
[18] proposed a novel approach to address the challenge of data sparsity in next Point-of-Interest
recommendation, called Meta-SKR, which leverages a meta-learning approach to generate user-
conditioned parameters for a sequential-knowledge-aware embedding module. Bansal et al. [5]
proposed a MAML-based meta-learning method LEOPARD for domain adaptation tasks in Natural
Language Processing. In addition, there are some works on IR. Carvalho et al. [13] proposed a
meta-learning algorithm to suppress the undesirable outlier effects of the pairs of documents using
the pairwise ranking function. Zabashta et al. [81] presented a meta-learning model for selecting
rank aggregation algorithms based on a specific optimality criterion. Wu et al. [72] introduced a
novel Bayesian Online Meta-Learning Model (BOML) tailored for personalized product search.
BOML harnesses meta-knowledge acquired from inferences made about other users’ preferences,
enabling accurate predictions even in situations where historical data are limited. By addressing

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

Meta-Learning to Rank for Sparsely Supervised Queries 14:7

the challenge of data sparsity, BOML can significantly enhance the accuracy of recommendations
in personalized product search. Wang et al. [71] proposed Meta-learning based Fair Ranking, which
alleviates the data bias and achieves better fairness metrics in the ranking model through an
automatically weighted loss. Sun et al. [66] proposed the MetaAdaptRank, which is a domain
adaptive learning method for few-shot Neu-IR based on meta-reweighted weak supervision data
selection during the different periods of the training process. However, to the best of our knowledge,
there have been no work using meta-learning on ranking models with the sparsely labeled queries.

3 The Framework

Our proposed MLTR framework is presented in this section. First, we will explain the traditional
LTR model and the meta-based LTR model, which sets the problem context. Then, we will detail
the MLTR’s training and testing processes, which enables fast adaptation and improve model
generalization.

3.1 LTR

Let Q = {q1, g2, ..., qn} denote the collection of N queries, D = {d1,ds, ..., dy} denote the collection
of M documents, and L = {1,2,...,[} denote the collection of [labels. There is an order of labels
I>1-1>..> 1, where > denote the sequence of the label order.

For every query g;, there is a corresponding related document collection D; = {d; 1, d;2,d; }
and the corresponding label collection y; = {y;1, Yi2, ... yi s }. Above all, the original data S can
be denoted as S = {(g;, D;), y;}Y,. The object is to train the ranking model of a given query g;
and corresponding related document collection D; with the ranking label y;, mathematically as
J; = f(x;;0) where f(-) is a ranking function, 6 represent all the learnable parameters in f(-),
and x; denote the concatenated feature vector generated from the query and documents (g;, D;).
x; = concat(¢p(q;), ¥(D;), r;), where ¢(-) and /(-) denote the query encoder and the document
encoder, respectively; r; denotes the numeric ranking features for each query and corresponding
related document collection (g;, D;). Generally, we learn the optimized 6* by ming+ SN LG yi)
and L could be used as any ranking loss functions.

3.2 Problem Formulation

Our work is inspired by optimization-based meta-learning, specifically MAML [25], which optimizes
globally shared parameters over several tasks, so as to rapidly adapt to a new task with just one or
a few gradient steps based on a small number of examples.

In the search and ranking setting, we define each task as ranking items for a given query. Our
MLTR framework trains a model with a good generalization which can quickly adapt to a new
query based on the query’s sparse engagement information. We divide the raw data into S and 7"
We limit each query task (including the query and all its corresponding items) within only one set,
such that there is no query overlap between S and 7.

For each task query g; (¢ Q) in S, its corresponding items are randomly divided into a training
set Strqini and a test set Syesr; to optimize the model during various stages. For each task query
g; (€ Q) in 7T, its corresponding items are randomly split into a fine-tuning set S;yning,; and an
evaluation set S,yq; to fine-tune the model and assess its performance, respectively. For further
information regarding the notation employed in this article, please refer to Table 1.

3.3 MLTR

The MLTR framework’s key concept is to create robust model parameters through many query-based
ranking tasks in meta-training, then quickly adapt these parameters for new tasks in meta-testing
with a few gradient steps. In meta-training, it performs local and global updates. The local update

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

14:8 X. Wu et al.

Table 1. Summary of Notation

Notation Definition

q,d Query, document

S Set of datasets with queries for meta-training

Strain Set of sampled training data for meta-training S for query-specific ranker
Stest Set of sampled test data from meta-training S for meta-ranker

Sirainpn- Set of fixed positively and negatively labeled items assigned to each query
in the training dataset of Sy gin

Stest:pn- Set of fixed positively and negatively labeled items assigned to each query
in the test dataset of S;eq;

Strain,i Training data for query i in S;yqin

Stest.i Test data for query i in Syes;

T Set of datasets with unseen queries for fine-tuning and evaluation

Ttuning Set of sampled data from 7~ for fine-tuning

Teval Set of sampled data from 7~ for evaluation

Truningp-n- | Set of fixed positively and negatively labeled items assigned to each query
in the test data 7 for fine-tuning

Teval-rest Remaining test dataset 7~ for evaluation

Ttuning,i Fine-tuning data for query i in 7zuning

Tevali Evaluation data for query i in 7¢yy

g(-,0) Meta-ranker with global parameter 6

f(,0) Query-specific ranker with parameter 6; for query i
Lguery(0;) | Loss function of query-specific ranker

Liera(0) Loss function of meta-ranker

adjusts the parameter of the query-specific ranker on each training set (learning process). The global
update trains the parameter of the global ranker to minimize the meta-losses with the adapted
parameters on the test sets (learning-to-learn process). The proposed meta-learning approach to
ranking considers that individual queries may have distinct optimal parameters for their rankers,
which is unlike traditional LTR models that learn a global ranking model applicable to all queries.
Figure 1 illustrates the architecture of the proposed meta-training process. To estimate document
relevance for a new query in meta-testing, the ranker can then be fine-tuned based on the limited
amount of labeled documents. The following subsections provide the details of the proposed
approach.

3.3.1 Meta-Training. We define the meta-ranker and query-specific ranker in our model as well,
similar as the MAML [25] setting. The ranker model can be defined with any model structure based
on your tasks, such as the basic Multi-Layer Perceptron (MLP). Query-specific ranker f(-; ;) is
initialized by the meta-ranker and learns the task-specific parameters 6; to optimize a specific task
at a time. Meta-ranker ¢(-; 6) learns across multiple tasks based on the query-specific ranker and
can improve the model generalization performance. Although these two rankers share the same
network structure and parameters 0;, 0, respectively, their loss function objectives are different.
Thus, the meta-learning for sparsely supervised search could be defined as, for the meta-training
dataset S = Sirain U Stest, the meta-train process aims to train the query-specific ranker f(+; 6;)
to learn task-specific parameters 6; on S;qin, and to train the meta-ranker g(-; 0) cross multiple
tasks on S;.s; to extend the model generalization. Note that training and test sets are split at the

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

Meta-Learning to Rank for Sparsely Supervised Queries 14:9

Query 1 Query 2 Query i

< B B-
v X X Local Parameter Update Query-specific
[Training e Ranker

Parameter
Initialization

Meta
Training Set

g~ B~

L Test Set : NG | Meta Ranker
Global Par ter Update

Fig. 1. The architecture of the proposed MLTR in the meta-training process.

query level within meta-training process. As introduced earlier in this section, each query g; in the
meta-train data has a corresponding training set S;rqin,i (C Strain) and Syest.i (C Stest)-

The model training consists of a basic specific-task learning process and cross-task meta-
adaptation process, trained on training set S;.qin and test set S;ess, respectively. Note that there
is no intersection between Syqin and Syesr. For the basic specific-task learning process (local
parameter updates with training set), the query-specific ranker focuses on the quick acquisition of
knowledge to learn task-specific parameters through the LTR loss. LTR loss indicates how well the
model is performing on the specific task (query). For the meta-cross-task adaptation process (global
updates with test set), the model further learns generalized parameters cross-tasks and updates the
meta-ranker through the meta-loss. Meta-loss indicates how well the model is performing across
multiple tasks. In attempting to learn a meta-ranker this way, it could solve the generalization issue,
especially in the sparsely labeled dataset.

Algorithm 1 shows the detailed steps of the meta-training process. First, we define two different
learning rates a and f§ for query-specific ranker parameter updates and meta-ranker parameter
updates, respectively. The model starts with initializing the meta-ranker parameters. Then it updates
the parameters based on each batch, until convergence. For each batch, meta-training process
could be summarized as following steps: First, initialize the query-specific ranker f(-; 6;) with the
meta-ranker g(-; §) parameters 6; = 6. Second, sample a batch of queries Sp from the S, B denotes
the batch size. Then, we can rewrite the loss function of query-specific ranker L., for each
query as the following:

Lquery(ei) = LS,mm,i(gb yi) = LS,mm,i (f(xi; 01'), yi)» (1)

where Syrqin,; represents the training set of query g; € Sp, and §j; = f(x;; 6;) represents the model
output of query g;. £ denotes the different ranking loss. This query-specific ranker aims to find
optimal parameters 0; for query g;. It will be updated sequentially multiple times (denoted by T)
through an inner loop. For each step in the inner training, we sampled K items from g;’s document
collection D; as the training set for this step.

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

14:10 X. Wu et al.

Algorithm 1: Meta Learning to Rank (MLTR)

Require: p(S): distribution over query-level tasks

Require: «, : step size hyperparameters, K: sampled items number, T: inner loop number
1: Randomly initialize 0 for meta ranker g(-)
2: while not done do
3. Sample a batch of queries Sg from p(S)

4. for each query ¢; € Sg do

5 Initialize query-specific ranker parameters 6; = 0

6 for inner loopt =1,...,T do

7: Sample K items Strqain:x,; from D; based on a sample strategy

8 Evaluate V.Lgyery(0;) using Straink,i and Lgyery(0;) in Equation (1)

9 Compute query-specific ranker parameters 6; with gradient descent in Equation (2)
10: end for
11: Sample K items S;est:x,i from D; based on a sample strategy
12: Add Stest:K,i to SB:test

13: end for

14: Evaluate V.L,;044(0) using Sp.rest and Lperq(0) in Equation (3)
15: Update meta ranker 0 in Equation (4)

16: end while

Next, the query-specific ranker parameters 6; are updated by gradient descent of the query-
specific loss Lgyery as the following:

0;=0; - aquuery(gi)’ ()

where a denotes the learning rate of query-specific ranker f(-; 6;).

After updating the query-specific ranker f(+; 6;) for the task associated with query ¢;, we sample
K items from D; to form the test set. This sampling excludes items from the training set used in
the last inner loop T. It is important to note that an item may be present in the test set of the last
inner loop T and also in the training sets of earlier inner loops 1,..., T — 1. However, this overlap
does not lead to data leakage issues, as both rankers operate within the scope of the meta-training
process. Next step, we need to calculate the meta-loss and update the meta-ranker’s parameters for
optimizing all query-based tasks within batch Sp. The meta-loss L, Will be defined as

B
) 1
Lneta0) = Lo G140 = 5) L8100, (906500. 90 3

where Sp.resr represents the test set of query batch Sg, and §; = g(x;; 0;) represents the model
output of each query g; respect to the meta-ranker g(-, 0) and the updated parameters 0; from the
query-specific ranker, based on the training set. We let £ denote the different ranking loss. We
sum up the loss from each query of batch Sp and compute the average loss as the meta-loss from
this batch. This meta-ranker aims to optimize parameters 6 through the batch query Sg, learns
across multiple query-level tasks based on the query-specific ranker, and can improve the model
generalization performance. We sampled K items from ¢;’s document collection D; as the test set
for this step.
Meta-ranker updates 6 by gradient descent of the meta-loss L,¢;4 as the following:

0=0- ﬁvimeta(e): (4)

where f§ denotes the learning rate of meta-ranker g(-; 6).

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

Meta-Learning to Rank for Sparsely Supervised Queries 14:11

e

Query-specific ranker Local parameter update
learning using Eqgn. (2 -————
g gEan. (2) Meta loss update
. ——
L —-—-— . l Global parameter update
”

Meta loss update L,;,.¢4

O\)\V using Eqn. (3)

Meta-training update 6
using Eqn. (4)

Fig. 2. lllustration of MLTR in meta-training which optimizes for a representation 6 that can quickly adapt
to new queries. The orange dashed line represents the query-specific ranker initialized from the meta-ranker
and locally updated based on the training set data in meta-training. The blue dashed line represents the
direction of meta-loss updates based on the updated query-specific ranker on test data in meta-training. The
purple solid line represents the global updates of the meta-ranker based on the meta-loss.

Repeating the above batch level meta-training process, the query-specific ranker will continuously
train on the training set Strqin, the meta-ranker will adapt and update meta-parameters 6 on the
test set Syes; until the model parameter converges. Figure 2 shows an illustration of MLTR in
meta-training which optimizes for a representation 6 that can quickly adapt to new queries.

3.3.2 Meta-Testing. During the meta-testing phase, the meta-trained model (meta-ranker g(-))
is used to make predictions on the meta-test queries/tasks. Different from the usual supervised
learning model, the meta-trained model has a further fine-tuning process for additional gradient
steps with few epochs on the fine-tuning set 7;,ning before running the inference. This additional
fine-tuning step enables the model parameters to fast adapt to new queries based on Equation
(2), due to the learning-to-learn process. This meta-testing process accounts the fact that different
queries have different optimal parameters for their rankers and thus reduce the impact of domain
shift on the model. In consequence, the MLTR model has a significant advantage, particularly
when facing new queries with distinct characteristics compared to the queries used in training.
Additionally, we can also disable the fine-tuning mechanism and evaluate the model’s performance
using the evaluation dataset. The experiments in Section 5 demonstrate that MLTR with or without
fine-tuning both improves model generalization for sparsely supervised queries.

4 Experimental Setup
4.1 Datasets

We evaluate the performance of our MLTR framework in the setting of sparsely supervised queries
using four different datasets. The datasets include MQ2007, MQ2008, MSLR-10K,! and Istella-S
LETOR,? which are public datasets widely used as benchmarks for LTR models [58]. These datasets
consist of queries, retrieved documents, and labels provided by human experts. Furthermore, we
used a real-world e-commerce dataset collected from a 1-month user log on Walmart.com. The focus
of the dataset is on non-frequent tail queries, meaning the label distribution is extremely sparse.
This dataset includes user search queries and the corresponding products in the search results, with
labels (rating scores) ranging from 1 to 15 based on the level of user engagement. Query-product

Thttps://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval
Zhttp://quickrank isti.cnr.it/istella-dataset

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval
http://quickrank.isti.cnr.it/istella-dataset

14:12 X. Wu et al.

Table 2. Basic Statistics of the Datasets

Queries Items Query-Item Pairs Positives Features Range of Ratings
MQ2007 1,692 65,323 69,623 25.84% Sparse features (46) 0~2
MQ2008 784 14,384 15,211 19.28% Sparse features (46) 0~2
MSLR-10K 10,000 1,200,192 1,200,192 47.99% Sparse features (136) 0~4
Istella-S 33,018 3,408,630 3,408,630 11.39% Sparse features (220) 0~4
Walmart Dataset 151,770 12,372,081 38,837,815 2.19% Re-ranking feature (63), text feature 1~15

pairs that have been purchased receive the highest scores, whereas products that have received
only clicks are assigned scores ranging in the middle. Products that have only received impressions
are assigned scores lower than that of the click-only products. Negative items are assigned a score
of 1. Scores for ordered products are calculated using a smoothed estimation of their order rate
(rate = W‘ﬁ%), where « is the smoothing factor.

For all the above datasets, we first divide the raw data into meta-train, meta-validation, and
meta-test sets, with a ratio of 80%, 10%, and 10%, respectively. Each query-document (item) pair is
associated with a relevant rating label, which has different ranges for each dataset. Table 2 provides

more details about the data statistics.

4.2 Sparsely Labeled Data
To simulate the sparse labeled queries, we further process the train, validation, and test datasets.
In our experiments, we primarily control the number of positively labeled documents since it is
usually limited in the real world and the negative documents can often be sampled from the dataset
in a relatively large quantity. We perform a quantitative comparison on the simulated imbalanced
datasets during training and testing.

We use S with superscript p - n- to denote the number of sampled positive-/negative-labeled
items per query in the training data (e.g., Strain;p1n9 means the sampled training data with one
positive-labeled items and nine negative-labeled items per query). Thus, S;qin is chosen from

{Strain:p1n4s Strain:pln‘)s Strain:plnl‘); Strain:plnz‘); Strain:p1n39}

and Syes; is chosen from

{Stest:p1n4a Stest:pln% Stest:plnl% Stest:p1n29, Stest:p1n39}~
Similarly, we use 7 with superscript p - n- to denote the number of sampled positive-/negative-
labeled items per query for model fine-tuning, T;yning is chosen from
{ﬁuning:pln% ﬁuning:pln‘)s ﬁuning:plnl% ﬁuning:plnzf)s 7;uning:p1n39}

and the rest of the items of each query to evaluation our model with T¢ya1.rest-
The validation set will be used to find the best model and hyper-parameters during the meta-
training process and will be split in the same manner as the meta-test dataset.

4.3 Evaluation Metrics

For the evaluation of the ranking results in MLTR, we apply Normalized Discounted Cumulative
Gain (NDCG) which is suitable for ranking where users are usually sensitive to the ranked position
of the relevant items [37].

4.4 Baseline Methods

To verify the efficiency and compatibility of our proposed model, we refrained from directly using
overly complex baseline models. Instead, we conducted experiments on simple models and observed

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

Meta-Learning to Rank for Sparsely Supervised Queries 14:13

the resulting improvements to verify the effectiveness of our meta-learning based method for overall
performance improvement in LTR models. On the other hand, due to the lack of semantic features
for queries and corresponding documents in the public datasets MQ2007, MQ2008, MLSR-10K,
and Istella-S, we did not utilize the corresponding text embedding representation features in our
tests. Nevertheless, we supplemented the corresponding text embedding representation features
using the BERT model with pre-trained weights from distillbert-base-uncased® based on the text
information of the query and document in the subsequent Walmart.com dataset. We then conducted
experiments to verify the effectiveness of these features. We compare MLTR with the following
competitive baselines:

—LTR: The LTR baseline is a three-layer MLP with a ReLu activation function. The ranking
loss functions are introduced later in this section. To ensure fair comparisons, we perform
fine-tuning on the test stage.

— LTR+SMOTE [15]: This method is resampling-based and generates a resampled list using
SMOTE, a popular oversampling strategy. We added the resampled data to the original
training data and followed the same training and testing protocol as the LTR baseline
model.

— LTR+GMVAE [60]: This method is based on data augmentation and utilizes GMVAE to generate
additional synthetic items. The GMVAE model is pre-trained with the entire training dataset,
and then the augmented lists are produced. We added the synthetic data to the original training
data and followed the same training and testing approach used with the LTR baseline model.

— LTR+Policy-Gradient [50]: PL ranking models, a decision theory-based approach to ranking.
This model employs Gumbel sampling techniques for efficient sampling of multiple rankings
from a PL model. Following this, algorithms PL-Rank-1, PL-Rank-2, and PL-Rank-3 are applied
to these samples. This process enables an unbiased approximation of the gradient of a ranking
metric in relation to the model. For our experiments, we have adhered to the model parameters
and implementation as detailed in the official repository* and adapted the data-loader to fit
our experimental setup.

— LTR+Unbiased [51]: Unbiased click-based LTR models, tailored specifically to adjust for
position bias in click feedback. In our experiments, we deploy three distinct estimators. First,
the IPS approach employs counterfactual IPS estimation to mitigate the selection bias linked
to examination probabilities. Next, we utilize DM and DR approaches that account for position
bias, trust bias, and item-selection bias, offering a more flexible criterion for unbiasedness
compared to the widely used IPS method. Our implementation follows the model parameters
outlined in the official repository® with N = 10~ for comparison, and we have adapted the
data-loader to suit our experimental framework.

To ensure a fair comparison, most components in our proposed MLTR model employ the same
model structure as the LTR baseline model. Regarding MLTR, we made corresponding adjustments
to the model training process and data usage.

In traditional LTR models, three different types of loss functions, namely Pointwise, Pairwise,
and Listwise [44], are usually used depending on the task and data. We use the following repre-
sentative losses for the LTR baseline and MLTR: RankMSE, RankNet, LambdaRank, and ListNet
losses.

3https://huggingface.co/distilbert-base-uncased
“https://github.com/HarrieO/2022-SIGIR-plackett-luce
Shttps://github.com/HarrieO/2022-doubly-robust-LTR

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

https://huggingface.co/distilbert-base-uncased
https://github.com/HarrieO/2022-SIGIR-plackett-luce
https://github.com/HarrieO/2022-doubly-robust-LTR

14:14 X. Wu et al.

Pointwise Loss. It only takes into account a single document d; ; at a time for a query ¢;. RankMSE
algorithm [16] is as follows:

M
LU xipyag) =) (i) = i)’ (5)
j=1
Pairwise Loss. It considers a pair of documents < d; j, d; s > at a time for a query ¢; if y; ; > yi
(d;,; should be ranked before d;5) [9]. RankNet algorithm [10] and LambdaRank algorithm [70]
with their loss functions shown in Equation (6) are as follows:

M-1 M
Lfxipxis) = Y > o(f(xi) = f(xis)),)
J=1 s=LYij>Yis
where ¢ denotes the Sigmoid function for RankNet loss, ¢(u) = ANDCG(},s) log,(1 + e™°%)
for LambdaRank loss, where o is a hyper-parameter and ANDCG(j, s) is the absolute difference
between the NDCG values when two documents d; ; and d; s are swapped.
Listwise Loss. It directly looks at the entire list of documents D; and tries to come up with the
optimal ordering for each query g; [12]. For example, the loss function for the ListNet algorithm is
as follows:

N
L(Fixoy) =) LIFx0), ya), ()
i=1
where L(-) denote the cross-entropy loss. f(x;) is the predict label for query g;. y; denotes the true
label of each document in query g;.

4.5 Research Questions (RQs)

An extensive set of experiments were designed to address the following questions of the proposed
research:

RQ1: Can the proposed MLTR framework achieve improved performance on sparsely labeled
queries over the baseline methods? (Section 5.1)

RQ2: How does the training and test mechanism designed for MLTR effectively improve model
performance compared to traditional model training processes? (Section 5.2.1)

RQ3: Without fine-tuning toward a specific query in test data, can MLTR still improve model
generalization? (Sections 5.2.2 and 5.2.3)

RQ4: Can MLTR alleviate the data sparsity issue and domain shift problem? How much NDCG lift
can the MLTR models gain over the traditional LTR models? Is the amount of NDCG relative
gain correlated with training/test data’s sparseness? (Section 5.3)

RQ5: Can MLTR be effective in real-world applications with limited labeled data and result in
improved performance? (Section 5.4)

5 Experimental Results

In this section, we conduct experiments on the datasets introduced in Section 4.1. We compare the
proposed MLTR model and the baseline LTR models under different scenarios, taking into account
multiple ranking loss functions and multiple simulated data sparsity cases.

5.1 Baseline Comparison (RQT1)

We compare the performance of MLTR to traditional LTR models when handling sparsely labeled
queries. We tested our models on the four public datasets by simulating sparse data scenarios.
The process involved training on S;rain;p1ng and Stest:pino, followed by fine-tuning on Truning:pino

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

Meta-Learning to Rank for Sparsely Supervised Queries

14:15

Table 3. Comparative Performance of Baseline Models and the MLTR Framework in Terms of NDCG@1,
NDCG@5, and NDCG@10 Metrics on the Evaluation Set Tgyq1.resz

MQ2007 MQ2008 MSLR-10K Istella-S
Method NDCG@1/5/10 NDCG@1/5/10 NDCG@1/5/10 NDCG@1/5/10
LTR
RankNet 0.4090/0.4672/0.5166 0.5000/0.5931/0.6461 0.3392/0.3594/0.3886 0.6146/0.6335/0.702
RankMSE 0.4286/0.4501/0.4946 0.4583/0.5407/0.6030 0.3624/0.3723/0.3974 0.6255/0.6412/0.706
ListNet 0.4454/0.4857/0.5354 0.4722/0.5796/0.6309 0.3984/0.3994/0.4224 0.6279/0.6433/0.7088
LambdaRank 0.4314/0.5025/0.5441 0.5972/0.6264/0.6907 0.3731/0.3808/0.4097 0.6146/0.6354/0.7054
LTR + SMOTE
RankNet 0.4762/0.5114/0.5603 0.4861/0.5937/0.6557 0.3584/0.3695/0.3978 0.6279/0.6371/0.7041
RankMSE 0.4286/0.4897/0.5351 0.5000/0.5877/0.6524 0.3640/0.3823/0.4085 0.6114/0.6263/0.6912
ListNet 0.4762/0.4959/0.5523 0.4861/0.6095/0.6603 0.3737/0.3789/0.4061 0.6207/0.6297/0.6928
LambdaRank 0.4622/0.5064/0.5469 0.5972/0.6452/0.6861 0.3479/0.3576/0.3871 0.6217/0.6359/0.700
LTR + GMVAE
RankNet 0.4930/0.5006/0.5412 0.5417/0.6352/0.6886 0.3570/0.3739/0.3989 0.6056/0.6281/0.6967
RankMSE 0.4454/0.4861/0.5168 0.4861/0.5617/0.6348 0.3582/0.3630/0.3879 0.6036/0.6286/0.6946
ListNet 0.4622/0.4820/0.5274 0.4167/0.5467/0.6327 0.3832/0.3829/0.4043 0.5997/0.6261/0.6943
LambdaRank 0.4762/0.4873/0.5369 0.5556/0.6237/0.6844 0.3627/0.3827/0.4091 0.5927/0.6187/0.6885
LTR + Policy-Gradient
PL-Rank-1 0.4416/0.5046/0.5342 0.5611/0.6133/0.6569 0.3489/0.3614/0.3906 0.6051/0.6110/0.6764
PL-Rank-2 0.4400/0.4975/0.5275 0.5485/0.6124/0.6502 0.3448/0.3591/0.3822 0.6129/0.6159/0.6788
PL-Rank-3 0.4458/0.5036/0.5426 0.5563/0.6209/0.6825 0.3455/0.3649/0.3958 0.6108/0.6284/0.6921
LTR + Unbiased
IPS 0.3921/0.4866/0.5154 0.6102/0.6514/0.6968 0.3383/0.4008/0.4100 0.6497/0.6683/0.7019
DM 0.3808/0.4715/0.5042 0.5994/0.6491/0.6979 0.3246/0.3918/0.4289 0.6597/0.6512/0.7048
DR 0.4226/0.4736/0.5159 0.6108/0.6465/0.6985 0.3613/0.3981/0.4246 0.6535/0.6817/0.7002
MLTR + without Fine-Tuning
RankNet 0.4874%/0.4895%/0.5444° 0.5694%/0.6048%/0.6667° 0.35922/0.37022/0.3991* 0.6159/0.6339/0.7028
RankMSE 0.4454/0.4788%/0.5191% 0.5833%/0.5964%/0.6544 0.3867%/0.3917/0.4158* 0.6275/0.6400/0.7082
ListNet 0.5042%/0.5068%/0.5519* 0.5694*/0.6116%/0.6669* 0.4002/0.3996/0.4230 0.6336%/0.6465/0.7141*
LambdaRank 0.5014%/0.5139%/0.5669* 0.6250%/0.6504%/0.6981* 0.3662/0.3798/0.4092 0.6072/0.6307/0.7024
MLTR + with Fine-Tuning
RankNet 0.5770%/0.5460%/0.5913* 0.6250%/0.6452%/0.6949* 0.3873%/0.3889%/0.4122° 0.6212%/0.6385%/0.7071*
RankMSE 0.4902%/0.5238%/0.5646* 0.5972%/0.6505%/0.6985% 0.3887%/0.3981%/0.4237* 0.6362%/0.6450%/0.7112%
ListNet 0.5266/0.5254%/0.5704* 0.6111%/0.6473%/0.7027* 0.4088%/0.4100%/0.4342° 0.6388%/0.6490%/0.7172°
LambdaRank 0.5350%/0.5409%/0.5914* 0.6389%/0.6590%/0.7130* 0.3739%/0.3850%/0.4119® 0.6196%/0.6397%/0.7089*

This evaluation encompasses four publicly available datasets: MQ2007, MQ2008, MSLR-10K, and Istella-S. The highest
scoring results for each task and metric are emphasized.
#Indicates a statistically significant improvement of MLTR (with and without fine-tuning) over the corresponding LTR
models. This is evidenced by a p-value < 0.01 in a two-tailed z-test.

and evaluating the results on 7¢y41.ress- The results shown in Table 3 indicate that our MLTR
models, regardless of being in a without fine-tuning or with fine-tuning setting, outperform the
baseline models in all metrics NDCG@1, NDCG@5, and NDCG@10) across all four datasets, with
the exception of the unbiased click-based LTR baseline models. This improved performance is
maintained across various loss functions. Notably, on the MQ2007 and MQ2008 datasets, where the
positive sample distribution is relatively sparse, the MLTR model shows significant improvement
across all loss functions, providing further evidence that the meta-learning approach can enhance the

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

14:16 X. Wu et al.

model’s predictive ability in sparse data. While the MSLR dataset has a relatively even distribution
of positive and negative samples overall, the MLTR model still manages to improve the model’s
predictive results in most of the loss functions. The results also suggest that the SMOTE resampling
technique can alleviate the issue of sparse data and improve performance compared to the traditional
LTR model. The GMVAE-based data augmentation method outperforms the SMOTE resampling
method in most cases as it can incorporate more informative data. However, data augmentation-
based methods do not significantly enhance model generalization compared to our proposed MLTR
approach. In comparing the PL-Rank methods with MLTR, we found that the PL ranking methods
lack consistent stability, particularly underlined by our experiments that highlight the sparse
nature of positive samples during training. In contrast, the test results indicate that MLTR yields
more stable outcomes in scenarios characterized by a limited number of training samples or a
sparser distribution of positive samples. On the other hand, when examining the results of Unbiased
click-based LTR methods, these methods show a notable advantage when the training samples
contain rich features in the query and document pairs. For instance, on the Istella-S dataset, DM
and DR achieved the best performance in NDCG@1 and NDCG@5. However, in the other three
datasets, the MLTR model displayed a more consistent performance advantage. In our proposed
MLTR model, we did not strictly address the bias present in the data. The experimental outcomes of
unbiased click-based LTR methods indicate that incorporating unbiased methods like IPS into the
training process of meta-learning might further enhance the performance of meta-learning-based
LTR models. We plan to implement and evaluate this approach in our future work. On the other
hand, regardless of whether the MLTR model utilizes the fine-tuning process during meta-testing, it
consistently demonstrates competitiveness compared to traditional methods. The results of MLTR
without fine tuning still lead in most experiments, surpassing traditional LTR models as well as
baseline models with other optimization approaches. Furthermore, if the fine-tuning process in
meta-testing is employed, we find that MLTR can adapt more rapidly to changes in queries, thereby
further enhancing the model’s performance on test evaluation data. When dealing with sparsely
labeled queries, our MLTR model can achieve better adaptability with a small proportion of labeled
data, leading to improved overall model performance.

5.2 Ablation Study

5.2.1 The Effect of Meta-Train and Meta-Test (RQ2). Figure 3 illustrates the performance trend
of the NDCG@10 metric on the test data during the training process (as shown in Figure 3(a)) and
the fine-tuning process (as shown in Figure 3(b)) for both MLTR and baseline models based on the
RankNet loss. In Figure 3(a), NDCG@10 of the test data is calculated by fine-tuning the model for
1 epoch on the meta-test tuning data after each training epoch (1 < e < 100) during the training
process. The results show that MLTR consistently outperforms the LTR and other baseline models
during the training process and can achieve close to its best performance within only a few epochs.

Figure 3(b) demonstrates the performance of MLTR and baseline models on the test data during
the fine-tuning process. The model (the best model from meta-training stage) was fine-tuned for 10
epochs on the meta-test test data, with NDCG@10 computed for each epoch. The results show that
MLTR consistently performs better than the LTR and other baseline models throughout the fine-
tuning process. Our model demonstrates clear and stable performance on unseen datasets through a
straightforward fine-tuning process, mitigating the effects of label imbalance and potential domain
shifts. Additionally, MLTR still significantly outperforms the baseline models even without any
fine-tuning on the meta-test test data, as shown by the NDCG@10 metrics at epoch 0 in Figure 3(b).
During fine-tuning, MLTR continues to improve and outperform the corresponding baseline models
under the RankNet loss from epoch 0 to epoch 4. On the other hand, the baseline models tend to
suffer from over-fitting problems, resulting in a decline in performance.

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

Meta-Learning to Rank for Sparsely Supervised Queries 14:17

Meta Train Evaluation

0.425+ ———
éo.mo
80-375’ —— LTR_RankNet
P LTR_SMOTE_RankNet

0.350+ —— LTR_GMVAE_RankNet
—— MLTR_RankNet

0 20 40 60 80 100
Training Epoch

(a) Meta train evaluation based on meta test single fine-tuning
Meta Test with Fine-tuning Evaluation

—/\—\

M

—— LTR_RankNet

LTR_SMOTE_RankNet
—— LTR_GMVAE_RankNet
—— MLTR_RankNet

0.371

NDCG@10
o
w
<)

0.35+

0 2 4 6 8 10
Fine-tuning Epoch
(b) Meta test fine-tuning evaluation with the best training model

Fig. 3. Meta-train/test evaluation on NDCG@10 of MLTR and other baselines with RankNet on the MSLR-10K
dataset.

5.2.2 Meta-Test without Fine-Tuning (RQ3). In this section, we delve deeper into the results of
our model’s ability to maintain competitiveness on unseen datasets without fine-tuning. Figure 4
provides a comparison of the performance of our MLTR model with the baseline models on various
datasets using the same entire test dataset 7 = Tuning U Tevai- As We can see, our model still has
stronger prediction ability for unseen data or distribution compared to the other models. We have
calculated the absolute growth of the data-augmentation based model and MLTR as compared to the
baseline LTR across multiple metrics. When comparing with other models, we can see that MLTR
consistently outperforms the LTR model across all 16 experiments, which encompass 4 datasets and
4 different loss functions. It is evident that the red bars, symbolizing MLTR, consistently exhibit
an increase in performance in all comparative experiments relative to other methods. While the
absolute magnitude of this growth may not appear substantial, the consistent improvement observed
across four distinct datasets and four diverse optimization ranking functions underscores the robust
reliability of the MLTR approach. Additionally, the significant test results further demonstrate

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

14:18 X. Wu et al.

TR s (TR+GMVAE
B LTR+SMOTE ~ mmm MLTR

ListNet

TR s (TR+GMVAE
B LTR+SMOTE ~ mmm MLTR

ListNet

MQ2007 NDCG@10 Without Fine-tuning Evaluation on 7

0.5
504
@03
O
So.2

0.1

0.0/

RankMSE RankNet LambdaRank
Loss function

(a) MQ2007
MQ2008 NDCG@10 Without Fine-tuning Evaluation on 7

RankMSE RankNet LambdaRank
Loss function

NDCG@10
o o
D o

o
N)

©
=)

(b) MQ2008
MSLR 10k NDCG@10 Without Fine-tuning Evaluation on 7
0.4
o
—=0.3
]
3
802
=
01 = TR B LTR+GMVAE
wen LTR+SMOTE W MLTR
0.0 RankMSE RankNet LambdaRank ListNet
Loss function
(c) MSLR-10K
Istella-S NDCG@10 Without Fine-tuning Evaluation on 7
0.6
o
®
504
Q
[a]
Z0.2
= TR B LTR+GMVAE
B LTR+SMOTE . MLTR
0.0

RankMSE RankNet LambdaRank
Loss function

ListNet

(d) Istella-S

Fig. 4. Comparison of the performance of models without fine-tuning, using various loss functions and models,
on the NDCG@10 metric of the entire test dataset 7~ from four different public datasets. The symbol & in the
bar indicates a statistically significant improvement of MLTR without fine-tuning over the corresponding
LTR models, as evidenced by a p-value < 0.01 in a two-tailed t-test.

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

Meta-Learning to Rank for Sparsely Supervised Queries 14:19

Table 4. Comparative Analysis of LTR and MLTR Frameworks Using NDCG@1, NDCG@5, and NDCG@10
Metrics on the MSLR-10K Dataset

Model Method Without Fine-Tuning With Fine-Tuning
NDCG@1/5/10 Percentage Increase NDCG@1/5/10 Percentage Increase

LTR LambdaRank 0.3359/0.3757/0.4086 -/-/- 0.3411/0.3809/0.4161 -/-/-

MLTR LambdaRank 0.3555/0.3816/0.4158 5.83%/1.58%/1.76% 0.3582/0.3822/0.4181 5.00%/0.34%/0.48%

LTR ListNet 0.3290/0.3703/0.4087 -/-/- 0.3328/0.3729/0.4107 -/-1-

MLTR ListNet 0.3632/0.3898/0.4259 10.37%/5.26%/4.22% 0.3634/0.3898/0.4268 9.20%/4.55%/3.91%

LTR RankMSE 0.3129/0.3418/0.3777 -/-/- 0.3136/0.3430/0.3785 -/-/-

MLTR RankMSE 0.3631/0.3868/0.4183 16.06%/13.17%/10.76% 0.3631/0.3868/0.4188 15.78%/12.78%/10.66%

LTR RankNet 0.3188/0.3545/0.3919 -/-/- 0.3191/0.3547/0.3923 -/-/-

MLTR RankNet 0.3462/0.3805/0.4107 8.57%/7.32%/4.79% 0.3463/0.3805/0.4108 8.50%/7.26%/4.71%

This analysis reflects a training approach where each query is paired with one positive document and a random number of
negative documents. The evaluation is conducted consistently on the same dataset.

that the majority of these improvements are statistically significant. This consistency aligns with
the results shown in Table 3. On the other hand, we noted that the data augmentation-based LTR
models, which aimed to rebalance the ratio of positive and negative samples in the training set
using synthetic data, did not uniformly improve performance during testing. In fact, on some
metrics, their performance was even worse than traditional LTR models. Furthermore, the results
from these datasets highlight that while data augmentation helps mitigate the impact of imbalanced
positive and negative samples, it does not effectively enhance the model’s generalization ability
when facing domain shift issues in testing.

5.2.3 MLTR with Query-Document Pairs (RQ3). To better validate the universality of the MLTR
model, we introduced a new set of comparative experiments within the MLTR-10K dataset. For each
query, we randomly selected 2 positive samples and 78 negative samples. During the meta-training
process, instead of adhering to a fixed p1n39 positive-negative ratio, we opted for a variable number
of negative samples while keeping one positive sample constant. This experimental setting is
designed to test whether MLTR outperforms LTR in scenarios with varying numbers of documents
per query. The results in Table 4 demonstrate that MLTR, even with dynamically adjusted numbers
of documents per query, still shows a significant advantage over LTR methods across different
optimization methods. We also compared results before and after fine-tuning. These results further
confirm that MLTR consistently outperforms LTR models, regardless of fine-tuning, underscoring
MLTR’s superior adaptability to new tasks.

5.3 Robustness of MLTR (RQ4)

This section demonstrates the superiority of our meta-learning model over the baseline when
dealing with extremely sparse data and a low positive-to-negative label ratio. The evaluation
was conducted on the MSLR-10K dataset, and various experimental scenarios were simulated by
sampling subsets of the data with varying ratios of positive and negative labels per query.

5.3.1 Experiment Setup. The factors to consider in this experiment include the number of
sampled positive-/negative-labeled items per query in the training data, the number of sampled
positive-/negative-labeled items per query in the test data, and the training model. For the model
training, we compare the model performance between the baseline LTR model and the MLTR model
with RankNet loss for both models, denoted by MLTR and LTR, respectively. We use NDCG@10
as the evaluation metric. There is no overlap between any sampled training and test data in order
to ensure the fairness of the experiment. The sampled training and test data are introduced in

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

14:20 X. Wu et al.

Mix Model Evaluation

MLTR 104
LTRp1na
MLTRp1n9
LTRp1no

MLTRp1n19

LTRp1n19 10.50% 11.60% 13.37%

-10

MLTRp1n29

% :Juswanoisduwi|

LTRpin2o{ 488% 5.17% 1.46% 3.22% 5.53%

Meta Train Dataset & Model

MLTRp1n3o{ 12:57% 11.54% 7.40% 9.74% 11.94%

LTRp1n39{ 0.00% 0.00% 0.00% 0.00% 0.00%
. LLlo
Tpina Tp1n9 Tp1n19 Tp1n29 Tp1n39

Meta Test Dataset

Fig. 5. Relative improvement experimental results of NDCG@10 from MLTR and LTR based on RankNet loss
in variant sparsely labeled data setting on MSLR-10K dataset.

Section 4.2. Given a combination of the training model, S, 7, we can obtain the NDCG@10 metrics
on Tyq With the best model trained on S and fine-tuned on 7;yning With 1 epochs. The experimental
results for all combinations are shown in Figure 5.

5.3.2 Data Distribution Shift Evaluation. Figure 5 shows the relative NDCG@10 gain on the
worst-performing model LTR,1n39. For each test data 7~ (represented by x-axis) corresponding
to a column, the NDCG@10 metrics are computed for a model (LTR or MLTR) trained on S
(represented by y-axis). LTR,,.,. and MLTR,.,,. denote the model LTR and MLTR trained on specific
training datasets, respectively; each grid in this column shows the relative NDCG@10 improvement
compared against LTR,1,39 on the evaluation data 7,.,. The darker the color of each grid, the
greater the improvement of the model in this grid relative to LTRy1n39.

We have the following observations on Figure 5. First, for any given S and 7, MLTR performs
better than LTR consistently, with a significant 1.86-14.95% improvement. For example, MLTR}1pn29
improves 12.53% over LTR,1n20 on the test data 71,29 (15.75% for MLTR vs. 3.22% for LTR shown
in Figure 5). Second, we observe that MLTR is much more stable and robust to the sparse data than
LTR, by comparing all models’ performance for a fixed test data 7 (corresponding to a column).
As S gets more sparse, performance degradation is observed for both MLTR and LTR models;
however, MLTR’s NDCG performance decreases much slower compared to LTR. For example,
looking at these models’ NDCG metrics on 7,1n4 (corresponding to column 1) as the training data
get more sparse from Spy1,4 10 Sp1n39, NDCG for LTR decreases by 23.23%, from 23.23% (LTRp1n4)
to 0% (LTRp1n39), while NDCG for MLTR decreases by 13.74% from 26.31% (MLTRp1,4) to 12.57%
(MLTRp1n39). In addition, as pointed out in Section 5.3, all the models evaluated in Figure 5 go

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

Meta-Learning to Rank for Sparsely Supervised Queries 14:21

Table 5. NDCG@1 and NDCG@5 Gain Are Reported in
Terms of the Percentage Lift for MLTR over LTR on Various
Loss of Walmart Dataset

Loss Gain NDCG@1 Gain NDCG@5
RankMSE +0.44% +0.95%*
RankNet +1.99%2 +0.92%*
LambdaRank +2.58% +1.04%*
ListNet +2.32%* +1.51%*

2Denotes statistically significant improvement from LTR to MLTR
with the p-value < 0.01 using the two-tailed #-test

through only one training epoch on 7;uning. With MLTR’s significant improvement over LTR under
all the scenarios, we show that the meta-based LTR models can generalize and adapt significantly
better than the traditional LTR models under sparsely labeled data settings.

5.4 Real-World Application Case Study (RQ5)

The study is performed on the real-world Walmart.com dataset, which has sparse positive-labeled
queries as shown in Table 2. It is worth conducting the robustness experiments to evaluate the
model generalization, as the data in the real world are often more dynamic with drifted distributions.

5.4.1 Experimental Results. Table 5 shows the percentage lift in NDCG@1 and NDCG@?5 for
MLTR over LTR on the Walmart dataset for various loss functions. The results from the Walmart
dataset align with the patterns observed in the public datasets. Our MLTR models outperform the
traditional LTR models in terms of both NDCG@1 and NDCG@5 metrics in sparsely labeled data
scenarios. On the other hand, Figure 6(a) illustrates the NDCG@5 gain between the MLTR and
LTR models using RankNet and LambdaRank losses. The same training method as used on the
public dataset was employed, with the model fine-tuned for 1 epoch on the test support data at
the end of each training epoch (1 < e < 30) during the training process. The NDCG@5 gain was
then computed based on (MLTRNpcc@s — LTRNDcG@s)/LTRNDcG@s- The results demonstrate
that the MLTR consistently outperforms the LTR models in real-world application datasets. In the
early stages of training, the MLTR model exhibits a greater improvement over LTR, demonstrating
the efficiency of the MLTR model and its faster convergence speed. As the number of training
iterations increases, both MLTR and LTR models become relatively stable, but the MLTR model
still performs better than the traditional LTR model. This conclusion holds true for both the human-
annotated relevance label sparsity setting seen in the three public datasets and the engagement
label sparsity setting demonstrated in the Walmart dataset. During the testing process illustrated in
Figure 6(b), the MLTR model consistently outperforms the LTR models throughout. Similar results
were observed in the implementation on public datasets.

After comparing the NDCG@5 gain ratios during both the training and fine-tuning processes
depicted in Figure 6, it can be observed that the MLTR model consistently outperforms the LTR
models. During training, the MLTR model exhibits a significant improvement over LTR, between
0.33% and 3.49%. Similarly, during fine-tuning under similar conditions, the MLTR model achieves
varying levels of performance improvement, ranging between 0.41% and 0.73%. Although the
improvement ratio during training is not as pronounced, it still indirectly validates the efficiency
and compatibility of the MLTR model with respect to the data and task.

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

X. Wu et al.

14:22
Percentage Lift of Training
E —=— RankNet Percentage Lift
g 31 LambdaRank Percentage Lift
B
c
(0]
2 21
(O]
o
©
0 14
@)
a
=

0 5 10 15 20 25 30
Training Epoch

(a) NDCG@5 percentage lift comparison between LTR and MLTR models based on 30 training epochs in
meta train evaluation

Percentage Lift of Testing

k=

1

q) 0-7

(@]

@©

)

C

Joe

—

)

o

©0.5

5 .

8 —=— RankNet Percentage Lift
= 0.4 LambdaRank Percentage Lift

0 5 10 15 20 25 30
Fine-tuning Epoch

(b) NDCG@5 percentage lift comparison between LTR and MLTR models based on 30 fine-tuning epochs

in meta test evaluation

Fig. 6. Meta-train/test evaluation of NDCG@5 percentage lift for MLTR and LTR models using RankNet and
LambdaRank on the Walmart.com dataset.

5.4.2 Sampling Strategy in Meta-Training. With the design of the inner loop during local updating
on the meta-train data in the MLTR, we can sample a data subset for the model’s local update with
different sample strategies. This sampling strategy during the local update aims to improve the
model performance on the specific query-based tasks and thus improves the model’s generalization
performance on a new query. In this section, in order to further boost the model performance
under the data sparsity setting, we explore different sampling strategies in the MLTR model by
using subsets of the data as training data. Several sampling strategies we investigate are defined as

follows:

— All Data: Use all data (256 items for each query) with baseline LTR model.
— Fixed Sampler: Fixed sample 1 positive and 19 negatives data with MLTR model.

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

Meta-Learning to Rank for Sparsely Supervised Queries 14:23

Sample Strategy Evaluation

£ 5] —=— MLTR Fixed Sampler
o MLTR 1 Positive
41 . o
g —e— MLTR Multiple Positive
(O]
L 31
&
in 21
S
o1
a)
Z 01

0 5 10 15 20 25 30
Training Epoch

Fig. 7. NDCG@5 percentage lift in model performance using various sample strategies compared to
LTRAj1datq during the meta-train evaluation of the MLTR model with RankNet on Walmart.com dataset.

— 1 Positive Sampler: Randomly sample 1 positive and 19 negatives data each time in training
with MLTR model.

— Multiple Positive Sampler: Randomly sample 2 positives and 18 negatives data each time in
training with MLTR model.

As shown in Figure 7, as the number of sampled positive data increases, the performance of
the MLTR model shows a slight improvement, with the green line demonstrating the highest
improvement, followed by the yellow line, and then the blue line. In addition, all the MLTR models
with sampling strategies (green, yellow, and blue lines) outperform the baseline LTR model with
All data (the NDCG@5 percentage lift above 0). We can see that compared to using all the data for
training LTR models, using variant partial of the data for each inner loop during the meta-training
can not only reduce the amount of computation during the training but also improve the model
generalization.

5.4.3 BERT with Fine-Tuning. As we mentioned in the previous section, we extend the features
with query and document text embedding representation; this semantics information is available
in the e-commerce dataset as the query and item title. We generate query text embedding and item
title text embedding from the pre-trained distilled BERT model distillbert-base-uncased;’ then the
BERT model parameters are fine-tuned during the meta-learner update, similar as MeLu [43]. No
significant improvement is observed by using the Bert-based query/item text embeddings. This is
not surprising since the BERT-based embedding information for a query, production pair is already
covered by a numeric feature in the e-commerce dataset, which is computed as the cosine similarity
between a Bert-based query embedding vector and item embedding vector [47].

5.4.4 Data Distribution Shift in Walmart.Com. In previous experiments, we simulated sparsely
labeled data settings on public datasets. However, the Walmart.com tail query dataset has an even
sparser data distribution and more severe data shift issues. Therefore, it is worthwhile to conduct
robustness experiments similar to those on public datasets to verify the model’s performance on
real-world application data. First, we used a configuration similar to the robustness experiments on
public datasets and followed the same experimental training and validation process as Section 5.3.2.

®https://huggingface.co/distilbert-base-uncased

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

https://huggingface.co/distilbert-base-uncased

14:24 X. Wu et al.

Mix Model Evaluation

LTRp1n99 4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MLTRp1n00 | 6:10% 6.67% 14
% LTRpinao | 193% | 257% | 239% | 1.62% | 1.99% | 2.99% 12
= MLTRpinae{ 7:29% 7.71% _
3 10 3
v LTRpingq 4.60% | 7.44% | 6.94% | 4.53% | 651% | 6.95% 5
g o
(7]
% pln9 8 o
o) LTRp2n98 4 3.12% 5.69% 5.02% 3.06% 5.01% 6.31% (3D
(- i o}
= X
LTRponas | 453% | 6.85% | 6.47% | 4.63% | 697% | 7.15%
D L4
S MLTRpz2ns
LTRp2n1s 1 L2
MLTRp2n18
—Lo

Tp1n9 Tp1nao Tp1n99 Tp2n18 Tp2nas Tp2n98

Meta Test Dataset

(a) NDCG@5 percentage improvement over LTRp1,99

MLTR Vs. LTR (RankNet) MLTR Vs. LTR (RankNet)

Sp1n99 Sp2nos 8
6

Pl 6 i
:s 4 i Ss
E p1ln49 g g p2n48 4 g
g 2 E— =

Spino 1 2.54% | 3.02% | 2.48% Spans 2

T T T O 0

To1no Tpinas Tpin9o Tp2n18 Tp2nas Tp2nos
Meta Test Dataset Meta Test Dataset
(b) Single positive label comparison (c) Multiple positive label comparison

Fig. 8. Relative improvement experimental results from MLTR and LTR based on RankNet loss in variant
sparsely labeled data setting on the Walmart.com dataset.

The difference was that we collected a more sparse ratio of positive and negative samples to validate
our model’s performance in a true application setting.

Figure 8(a) shows the relative NDCG@5 gain on the worst-performing model LTR;1,99. For each
test data 7 (represented by x-axis) corresponding to a column, the NDCG@5 metrics are computed
for a model (LTR or MLTR) trained on S (represented by y-axis), LTR.,. and MLTR,,.,,. denote the
model LTR and MLTR train on specific training dataset, separately; each grid in this column shows

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

Meta-Learning to Rank for Sparsely Supervised Queries 14:25

the relative NDCG@5 improvement compared against BR,1n99 on the same test data 7. The darker
the color of each grid, the greater the improvement of the model in this grid relative to LTRy1n99.

First, we observed that, similarly to the public dataset experiments, MLTR consistently outper-
formed LTR for any given S and 7, with a significant improvement of 3.2-10.7%. For instance,
in the test data 7,1n99, MLTR}1n49 shows an improvement of 8.07% over LTRyin49 (as shown in
Figure 8(a)), with MLTR achieving a 10.46% improvement compared to a 2.39% improvement for
LTR. Second, we noticed that MLTR is considerably more stable and robust in the face of sparse
data than LTR. This is evident when comparing the performance of all models for a fixed test
dataset 7~ (corresponding to a column), even in the case of more sparse datasets. As S gets more
sparse, performance degradation is observed for both MLTR and LTR models; however, MLTR’s
NDCG performance decreased much slower compared to LTR, this observation applies to both
scenarios of one positive-labeled item pln- and two positive-labeled items p2n- per query. For
example, looking at these models’ NDCG metrics on 7,1n9 (corresponding to column 1) as the
training data get more sparse from Spzn18 t0 Spangs, NDCG for MLTR decreases by 2.13%, from
5.25% (LTRp2n18) to 3.12% (LTRpzn9s), while NDCG for MLTR decreases only by 0.3% from 8.55%
(MLTRPang) to 8.25% (MLTszngg).

We further compared the relative NDCG gain of MLTR over LTR for a combination of S and 7"
Figure 8(b) and (c) correspond to the cases with one positive-labeled item and with two positive-
labeled item per query, respectively. Each grid in Figure 8(b) and (c) represents the relative NDCG@5
lift of MLTR over LTR when both models are trained on S (represented by y-axis) and tested on 7~
(represented by the x-axis). Take the lower right corner grid in Figure 8(b) as an example, it shows
a relative 2.48% improvement of MLTR,1n9 over LTRy1,9 on the test data 71,99 First, looking
at models’ performance on each test data 7~ (corresponding to each column), we see consistent
patterns in Figure 8(b) and (c) that the sparser the positive labels in S, the higher the relative NDCG
lift of MLTR over LTR. Second, fixing the training data S (corresponding to each row) in both
Figure 8(b) and (c), we find out that the sparse the test data is, the more relative improvement of
MLTR over LTR overall, with an exception of the most extreme case 7,1n99. Third, focusing on
the diagonal grids (when S and 7~ have the same number of positive-/negative-labeled items for
each query), we see that the sparser the data, the bigger gap between MLTR and LTR in overall
except the case of ratio 1:99. Overall, the sparser the training data and the test data, the more
significant NDCG lift of MLTR over LTR can be observed. This shows the MLTR model improves
the generalization performance over the baseline LTR model on the sparse setting in real-world
Walmart dataset.

6 Conclusion and Future Work

In this article, we introduce a novel MLTR framework that improves the generalization capability
of LTR models for search and ranking tasks with sparsely labeled queries. Our proposed model
enables quick adaptation to new queries with limited supervision and produces query-specific
rankers with optimal model parameters. Comprehensive experiments demonstrate the versatility
and flexibility of our approach, which can be applied to any existing LTR models. Real-world
application experiments also further illustrate the effectiveness of our proposed approach.

This work is an initial step toward a promising research direction. First of all, we will explore
the application of the proposed framework to neural ranking models and see if the improvement
is sustained. We also want to explore strategies for integrating unbiased LTR methods into the
training process within the current MLTR framework, further optimize and enhance the model’s
performance. We will also experiment with larger pre-trained language models as ranking models
in our framework. We will study whether meta-learning can provide additional benefit on top of

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

14:26 X. Wu et al.

transfer learning. Last but not the least, the proposed framework allows utilization of the meta-
learning approach for more real-world applications, such as head-to-tail transfer learning, as well
as the multi-task learning problem.

Acknowledgments

The authors would like to express their deepest gratitude to the team at Walmart Global Tech for
providing them with the opportunity to undertake this research project. Their guidance, expertise,
and resources were invaluable in helping the authors to complete this work.

References

[1] Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, and Marc Najork. 2019. Addressing Trust Bias for
Unbiased Learning-to-Rank. In WWW. ACM, 4-14.

[2] Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce Croft. 2018. Learning a Deep Listwise Context Model for Ranking
Refinement. In SIGIR. ACM, 135-144.

[3] Marcin Andrychowicz, Misha Denil, Sergio Gomez Colmenarejo, Matthew W. Hoffman, David Pfau, Tom Schaul, and
Nando de Freitas. 2016. Learning to Learn by Gradient Descent by Gradient Descent. In NIPS, 3981-3989.

[4] Javed A. Aslam, Evangelos Kanoulas, Virgiliu Pavlu, Stefan Savev, and Emine Yilmaz. 2009. Document Selection
Methodologies for Efficient and Effective Learning-to-Rank. In SIGIR. ACM, 468-475.

[5] Trapit Bansal, Rishikesh Jha, and Andrew McCallum. 2020. Learning to Few-Shot Learn across Diverse Natural
Language Classification Tasks. In COLING. International Committee on Computational Linguistics, 5108-5123.

[6] Rukshan Batuwita and Vasile Palade. 2010. Efficient Resampling Methods for Training Support Vector Machines with
Imbalanced Datasets. In IJCNN. IEEE, 1-8.

[7] Jonathan Baxter. 2000. A Model of Inductive Bias Learning. . Artif. Intell. Res. 12 (2000), 149-198.

[8] Luiz Henrique Bonifacio, Hugo Queiroz Abonizio, Marzieh Fadaee, and Rodrigo Frassetto Nogueira. 2022. InPars:
Data Augmentation for Information Retrieval Using Large Language Models. arXiv:2202.05144. Retrieved from
https://arxiv.org/abs/2202.05144

[9] Chris J. C. Burges. 2010. From RankNet to LambdaRank to LambdaMART: An Overview. Technical Report.

[10] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Gregory N. Hullender.
2005. Learning to Rank Using Gradient Descent. In ICML, Vol. 119, ACM, 89-96.

[11] Ethem F. Can, W. Bruce Croft, and R. Manmatha. 2014. Incorporating Query-Specific Feedback into Learning-to-Rank
Models. In SIGIR. ACM, 1035-1038.

[12] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to Rank: From Pairwise Approach to
Listwise Approach. In ICML, Vol. 227, ACM, 129-136.

[13] Vitor R. Carvalho, Jonathan L. Elsas, William W. Cohen, and Jaime G. Carbonell. 2008. A Meta-Learning Approach for
Robust Rank Learning. In SIGIR Workshop on Learning to Rank for Information Retrieval Singapore, Vol. 1.

[14] Nitesh V. Chawla. 2003. C4. 5 and Imbalanced Data Sets: Investigating the Effect of Sampling Method, Probabilistic
Estimate, and Decision Tree Structure. In ICML, Vol. 3, 66.

[15] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. SMOTE: Synthetic Minority
Over-Sampling Technique. J. Artif. Intell. Res. 16 (2002), 321-357.

[16] David Cossock and Tong Zhang. 2008. Statistical Analysis of Bayes Optimal Subset Ranking. IEEE Trans. Inf. Theory
54, 11 (2008), 5140-5154.

[17] Nick Craswell, Onno Zoeter, Michael J. Taylor, and Bill Ramsey. 2008. An Experimental Comparison of Click Position-
Bias Models. In WSDM. ACM, 87-94.

[18] Yue Cui, Hao Sun, Yan Zhao, Hongzhi Yin, and Kai Zheng. 2022. Sequential-Knowledge-Aware Next POI Recommen-
dation: A Meta-Learning Approach. ACM Trans. Inf. Syst. 40, 2 (2022), 23:1-23:22.

[19] Zhuyun Dai and Jamie Callan. 2019. Deeper Text Understanding for IR with Contextual Neural Language Modeling.
In SIGIR. ACM, 985-988.

[20] Zhuyun Dai, Vincent Y. Zhao, Ji Ma, Yi Luan, Jianmo Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith B. Hall, and Ming-
Wei Chang. 2023. Promptagator: Few-Shot Dense Retrieval from 8 Examples. In ICLR. OpenReview.net. Retrieved
from https://openreview.net/forum?id=gmL46YMpu2]

[21] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce Croft. 2017. Neural Ranking Models
with Weak Supervision. In SIGIR. ACM, 65-74.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-Training of Deep Bidirectional
Transformers for Language Understanding. In NAACL-HLT. Association for Computational Linguistics, 4171-4186.

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

https://arxiv.org/abs/2202.05144
https://openreview.net/forum?id=gmL46YMpu2J

Meta-Learning to Rank for Sparsely Supervised Queries 14:27

(23]

[24]

[25]

[26]

[27]

(28]
[29]

(30]
(31]
(32]
(33]
(34]
(35]
(36]
(37]

(38]

(47]
(48]
[49]

(50]

Thomas G. Dietterich. 2000. Ensemble Methods in Machine Learning. In Multiple Classifier Systems, 1st International
Workshop, Lecture Notes in Computer Science, Vol. 1857, Springer, 1-15.

Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C. H. Lee, Hugh Salimbeni, Kai Arulkumaran,
and Murray Shanahan. 2016. Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders.
arXiv:1611.02648. Retrieved from http://arxiv.org/abs/1611.02648

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks. In ICML, Vol. 70, PMLR, 1126-1135.

Tianyu Gao, Xu Han, Hao Zhu, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. 2019. FewRel 2.0: Towards
More Challenging Few-Shot Relation Classification. In EMNLP-IJCNLP. Association for Computational Linguistics,
6249-6254.

Xiubo Geng, Tie-Yan Liu, Tao Qin, Andrew Arnold, Hang Li, and Heung-Yeung Shum. 2008. Query Dependent Ranking
Using K-Nearest Neighbor. In SIGIR. ACM, 115-122.

Phillip I. Good. 2005. Resampling Methods: A Practical Guide to Data Analysis. Birkhauser.

Weiwei Guo, Xiaowei Liu, Sida Wang, Huiji Gao, Ananth Sankar, Zimeng Yang, Qi Guo, Liang Zhang, Bo Long,
Bee-Chung Chen, et al. 2020. Detext: A Deep Text Ranking Framework with BERT. In CIKM, 2509-2516.

Shashank Gupta, Philipp Hager, Jin Huang, Ali Vardasbi, and Harrie Oosterhuis. 2023. Recent Advances in the
Foundations and Applications of Unbiased Learning to Rank. In SIGIR. ACM, 3440-3443.

Hui Han, Wenyuan Wang, and Binghuan Mao. 2005. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced
Data Sets Learning. In ICIC, Vol. 3644, Springer, 878-887.

Shuguang Han, Xuanhui Wang, Mike Bendersky, and Marc Najork. 2020. Learning-to-Rank with BERT in TF-Ranking.
arXiv:2004.08476. Retrieved from https://arxiv.org/abs/2004.08476

Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. 2008. ADASYN: Adaptive Synthetic Sampling Approach for
Imbalanced Learning. In IJCNN. IEEE, 1322-1328.

Katja Hofmann, Anne Schuth, Shimon Whiteson, and Maarten de Rijke. 2013. Reusing Historical Interaction Data for
Faster Online Learning to Rank for IR. In WSDM. ACM, 183-192.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry P. Heck. 2013. Learning Deep Structured
Semantic Models for Web Search Using Clickthrough Data. In CIKM. ACM, 2333-2338.

Xiaowen Huang, Jitao Sang, Jian Yu, and Changsheng Xu. 2022. Learning to Learn a Cold-Start Sequential Recom-
mender. ACM Trans. Inf. Syst. 40, 2 (2022), 30:1-30:25.

Kalervo Jarvelin and Jaana Kekéldinen. 2002. Cumulated Gain-Based Evaluation of IR Techniques. ACM Trans. Inf.
Syst. 20, 4 (2002), 422-446.

Xiang Jiang, Mohammad Havaei, Gabriel Chartrand, Hassan Chouaib, Thomas Vincent, Andrew Jesson, Nicolas
Chapados, and Stan Matwin. 2018. On the Importance of Attention in Meta-Learning for Few-Shot Text Classification.
arXiv:1806.00852. Retrieved from http://arxiv.org/abs/1806.00852

Thorsten Joachims. 2002. Optimizing Search Engines Using Clickthrough Data. In SIGKDD. ACM, 133-142.
Thorsten Joachims, Laura A. Granka, Bing Pan, Helene Hembrooke, and Geri Gay. 2005. Accurately Interpreting
Clickthrough Data as Implicit Feedback. In SIGIR. ACM, 154-161.

Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased Learning-to-Rank with Biased Feedback.
In WSDM. ACM, 781-789.

Evangelos Kanoulas, Stefan Savev, Pavel Metrikov, Virgiliu Pavlu, and Javed A. Aslam. 2011. A Large-Scale Study of
the Effect of Training Set Characteristics over Learning-to-Rank Algorithms. In SIGIR. ACM, 1243-1244.

Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019. MeLU: Meta-Learned User Preference
Estimator for Cold-Start Recommendation. In SIGKDD. ACM, 1073-1082.

Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Found. Trends Inf. Retr. 3, 3 (2009), 225-331.

Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. 2009. Exploratory Undersampling for Class-Imbalance Learning. IEEE
Trans. Syst. Man Cybern. Part B 39, 2 (2009), 539-550.

Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, and Salvatore Trani. 2017. The Impact of Negative Samples
on Learning to Rank. In ICTIR (CEUR Workshop Proceedings, Vol. 2007), CEUR-WS.org. Retrieved from https://ceur-
ws.org/Vol-2007/LEARNER2017_short_1.pdf

Alessandro Magnani, Feng Liu, Suthee Chaidaroon, Sachin Yadav, Praveen Reddy Suram, Ajit Puthenputhussery, Sijie
Chen, Min Xie, Anirudh Kashi, Tony Lee, et al. 2022. Semantic Retrieval at Walmart. In SIGKDD. ACM, 3495-3503.
Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian J. Goodfellow. 2015. Adversarial Autoencoders.
arXiv:1511.05644. Retrieved from http://arxiv.org/abs/1511.05644

Harrie Oosterhuis. 2021. Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and
Fairness. In SIGIR. ACM, 1023-1032.

Harrie Oosterhuis. 2022. Learning-to-Rank at the Speed of Sampling: Plackett-Luce Gradient Estimation with Minimal
Computational Complexity. In SIGIR. ACM, 2266-2271.

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

http://arxiv.org/abs/1611.02648
https://arxiv.org/abs/2004.08476
http://arxiv.org/abs/1806.00852
https://ceur-ws.org/Vol-2007/LEARNER2017_short_1.pdf
https://ceur-ws.org/Vol-2007/LEARNER2017_short_1.pdf
http://arxiv.org/abs/1511.05644

14:28 X. Wu et al.

(51]
(52]
(53]

(54]

(55]
[56]
(57]
(58]

[59]

[60]
[61]
[62]
[63]
[64]
(65]

[66]

(67]
(68]
[69]
[70]
(71]

[72]

(73]

(74]

Harrie Oosterhuis. 2023. Doubly Robust Estimation for Correcting Position Bias in Click Feedback for Unbiased
Learning to Rank. ACM Trans. Inf. Syst. 41, 3 (2023), 61:1-61:33. DOL: https://doi.org/10.1145/3569453

Harrie Oosterhuis and Maarten de Rijke. 2018. Differentiable Unbiased Online Learning to Rank. In CIKM. ACM,
1293-1302.

Harrie Oosterhuis and Maarten de Rijke. 2020. Policy-Aware Unbiased Learning to Rank for Top-k Rankings. In SIGIR.
ACM, 489-498.

Harrie Oosterhuis and Maarten de Rijke. 2021. Unifying Online and Counterfactual Learning to Rank: A Novel
Counterfactual Estimator that Effectively Utilizes Online Interventions (Extended Abstract). In I[JCAL ijcai.org,
4809-4813.

Harrie Oosterhuis, Anne Schuth, and Maarten de Rijke. 2016. Probabilistic Multileave Gradient Descent. In ECIR,
Lecture Notes in Computer Science, Vol. 9626, Springer, 661-668.

Zhiyuan Peng, Xuyang Wu, and Yi Fang. 2023. Soft Prompt Tuning for Augmenting Dense Retrieval with Large
Language Models. arXiv:2307.08303. DOI: https://doi.org/10.48550/ARXIV.2307.08303

Kun Qian and Zhou Yu. 2019. Domain Adaptive Dialog Generation via Meta Learning. In ACL. Association for
Computational Linguistics, 2639-2649.

Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. arXiv:1306.2597. Retrieved from https://arxiv.org/
pdf/1306.2597

Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Mike Bendersky, and Marc
Najork. 2021. Are Neural Rankers Still Outperformed by Gradient Boosted Decision Trees? In ICLR. Retrieved from
https://openreview.net/pdf?id=Ut1vF_q_vC

Zi-Hao Qiu, Ying-Chun Jian, Qing-Guo Chen, and Lijun Zhang. 2021. Learning to Augment Imbalanced Data for
Re-Ranking Models. In CIKM. ACM, 1478-1487.

Filip Radlinski, Madhu Kurup, and Thorsten Joachims. 2008. How Does Clickthrough Data Reflect Retrieval Quality?
In CIKM. ACM, 43-52.

Paul Rosenbaum and Donald Rubin. 1983. The Central Role of the Propensity Score in Observational Studies for
Causal Effects. Biometrika 70 (04 1983), 41-55. DOI: https://doi.org/10.1093/biomet/70.1.41

Mark Sanderson. 2010. Test Collection Based Evaluation of Information Retrieval Systems. Found. Trends Inf. Retr. 4, 4
(2010), 247-375.

Anne Schuth, Harrie Oosterhuis, Shimon Whiteson, and Maarten de Rijke. 2016. Multileave Gradient Descent for Fast
Online Learning to Rank. In WSDM. ACM, 457-466.

Shiliang Sun and David R. Hardoon. 2010. Active Learning with Extremely Sparse Labeled Examples. Neurocomputing
73, 16-18 (2010), 2980-2988.

Si Sun, Yingzhuo Qian, Zhenghao Liu, Chenyan Xiong, Kaitao Zhang, Jie Bao, Zhiyuan Liu, and Paul Bennett. 2021.
Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision. In IJCNLP. Association for Computational
Linguistics, 5030-5043.

Aleksei Ustimenko and Liudmila Prokhorenkova. 2020. StochasticRank: Global Optimization of Scale-Free Discrete
Functions. In ICML, Proceedings of Machine Learning Research, Vol. 119, PMLR, 9669-9679.

Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016. Learning to Rank with Selection Bias in
Personal Search. In SIGIR. ACM, 115-124.

Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc Najork. 2018. Position Bias Estimation
for Unbiased Learning to Rank in Personal Search. In WSDM. ACM, 610-618.

Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork. 2018. The Lambdaloss Framework
for Ranking Metric Optimization. In CIKM, 1313-1322.

Yuan Wang, Zhigiang Tao, and Yi Fang. 2022. A Meta-Learning Approach to Fair Ranking. In SIGIR. ACM,
2539-2544.

Bin Wu, Zaigiao Meng, Qiang Zhang, and Shangsong Liang. 2022. Meta-Learning Helps Personalized Product Search.
In WWW. Frédérique Laforest, Raphaél Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and
Lionel Médini (Eds.), ACM, 2277-2287.

Xuyang Wu, Alessandro Magnani, Suthee Chaidaroon, Ajit Puthenputhussery, Ciya Liao, and Yi Fang. 2022. A
Multi-Task Learning Framework for Product Ranking with BERT. In WWW. ACM, 493-501.

Rong Xiao, Jianhui Ji, Baoliang Cui, Haihong Tang, Wenwu Ou, Yanghua Xiao, Jiwei Tan, and Xuan Ju. 2019. Weakly
Supervised Co-Training of Query Rewriting and Semantic Matching for E-Commerce. In WSDM, 402-410.

[75] Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon Xiaoming Wang, Taibai Xu, and Ed H.

[76]

Chi. 2020. Mixed Negative Sampling for Learning Two-Tower Neural Networks in Recommendations. In WWW.
ACM/IW3C2, 441-447.

Shaowei Yao, Jiwei Tan, Xi Chen, Keping Yang, Rong Xiao, Hongbo Deng, and Xiaojun Wan. 2021. Learning a Product
Relevance Model from Click-Through Data in E-Commerce. In WWW, 2890-2899.

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

https://doi.org/10.1145/3569453
https://doi.org/10.48550/ARXIV.2307.08303
https://arxiv.org/pdf/1306.2597
https://arxiv.org/pdf/1306.2597
https://openreview.net/pdf?id=Ut1vF_q_vC
https://doi.org/10.1093/biomet/70.1.41

Meta-Learning to Rank for Sparsely Supervised Queries 14:29

[77] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang, Jianhui Chen, Changsung Kang, Hongbo
Deng, Chikashi Nobata, et al. 2016. Ranking Relevance in Yahoo Search. In SIGKDD, 323-332.

[78] Qian Yu and Wai Lam. 2019. Data Augmentation Based on Adversarial Autoencoder Handling Imbalance for Learning
to Rank. In Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press, Article 51, 411-418. DOI:
https://doi.org/10.1609/aaai.v33i01.3301411

[79] Jing Yuan, Christian Geifller, Weijia Shao, Andreas Lommatzsch, and Brijnesh J. Jain. 2023. When Algorithm Selection
Meets Bi-Linear Learning to Rank: Accuracy and Inference Time Trade Off with Candidates Expansion. Int. J. Data
Sci. Anal. 16, 2 (2023), 173-189.

[80] Yisong Yue and Thorsten Joachims. 2009. Interactively Optimizing Information Retrieval Systems as a Dueling Bandits
Problem. In ICML, ACM International Conference Proceeding Series, Vol. 382, ACM, 1201-1208.

[81] Alexey Zabashta, Ivan Smetannikov, and Andrey Filchenkov. 2015. Study on Meta-Learning Approach Application
in Rank Aggregation Algorithm Selection. In ECMLPKDD, CEUR Workshop Proceedings, Vol. 1455, CEUR-WS.org,
115-116.

[82] Zhi-Hua Zhou, De-Chuan Zhan, and Qiang Yang. 2007. Semi-Supervised Learning with Very Few Labeled Training
Examples. In AAAI. AAAI Press, 675-680.

[83] Barret Zoph and Quoc V. Le. 2017. Neural Architecture Search with Reinforcement Learning. In ICLR. OpenReview.net.
Retrieved from https://openreview.net/forum?id=r1Ue8Hcxg

Received 8 May 2023; revised 21 August 2024; accepted 1 September 2024

ACM Transactions on Information Systems, Vol. 43, No. 1, Article 14. Publication date: November 2024.

https://doi.org/10.1609/aaai.v33i01.3301411
https://openreview.net/forum?id=r1Ue8Hcxg

	Abstract
	1 Introduction
	2 Related Work
	2.1 LTR
	2.2 Sparsely Supervised Learning
	2.3 Meta-Learning for IR

	3 The Framework
	3.1 LTR
	3.2 Problem Formulation
	3.3 MLTR

	4 Experimental Setup
	4.1 Datasets
	4.2 Sparsely Labeled Data
	4.3 Evaluation Metrics
	4.4 Baseline Methods
	4.5 Research Questions (RQs)

	5 Experimental Results
	5.1 Baseline Comparison (RQ1)
	5.2 Ablation Study
	5.3 Robustness of MLTR (RQ4)
	5.4 Real-World Application Case Study (RQ5)

	6 Conclusion and Future Work
	References

